From 3245bc50f4c76c1abe82593d763b29f31eb65523 Mon Sep 17 00:00:00 2001 From: Daniel Saavedra Date: Mon, 13 Jul 2020 21:32:35 -0400 Subject: [PATCH] Create README_Result.md --- README_Result.md | 76 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 76 insertions(+) create mode 100644 README_Result.md diff --git a/README_Result.md b/README_Result.md new file mode 100644 index 0000000..c9b83c7 --- /dev/null +++ b/README_Result.md @@ -0,0 +1,76 @@ +# Result Photovoltaic fault detector + +## Panel Detector +### SDD7 +On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook), weight and result of this model (mAP 89.8%). + +

+ +

+

+ +

+ + + +### YOLO3 +On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%). + +

+ +

+ + + +## Soiling Fault Detector +### SSD300 +On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%). + +

+ +

+ + +### YOLO3 +On folder [Result yolo3 fault 1](Result_yolo3_fault_1/) show [history train](Result_yolo3_fault_1/yolo3_full_yolo.output), weight and result of this model (mAP 73.02%). + +

+ +

+ + +## Affected Cell Detector +### YOLO3 +On folder [Result yolo3 fault 2](Result_yolo3_fault_2/) show [history train](Result_yolo3_fault_2/yolo3_full_yolo.output), weight and result of this model (mAP 71.93%). + + +

+ +

+ + +## Diode Fault Detector +### YOLO3 +On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Result_yolo3_fault_4/yolo3_full_yolo.output), weight and result of this model (mAP 66.22%). + + +

+ +

+ + + + + +## Panel Disconnect Detector +### YOLO3 +To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is: +`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result` +To use this model, only the yolo3_panel detector model is needed. + +

+ +

+ + +The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality.