DataExcel to XML
This commit is contained in:
214
DataFlit2xml.py
Normal file
214
DataFlit2xml.py
Normal file
@@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 25 14:12:34 2020
|
||||
|
||||
@author: dlsaavedra
|
||||
"""
|
||||
|
||||
|
||||
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import numpy as np
|
||||
import errno
|
||||
import flirimageextractor
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas
|
||||
import matplotlib.patches as patches
|
||||
import xml.etree.cElementTree as ET
|
||||
|
||||
|
||||
def mkdir(filename):
|
||||
if not os.path.exists(os.path.dirname(filename)):
|
||||
try:
|
||||
os.makedirs(os.path.dirname(filename))
|
||||
except OSError as exc: # Guard against race condition
|
||||
if exc.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
argparser = argparse.ArgumentParser(
|
||||
description = 'Data flirt excel to train estructure data')
|
||||
|
||||
|
||||
|
||||
argparser.add_argument(
|
||||
'-i',
|
||||
'--input',
|
||||
help='path data excel')
|
||||
argparser.add_argument(
|
||||
'-T',
|
||||
'--input_thermal',
|
||||
help='path thermal images')
|
||||
# Example 'Thermal/'
|
||||
argparser.add_argument(
|
||||
'-o',
|
||||
'--output',
|
||||
help='folder save Train data')
|
||||
#Examplo 'Train_B/'
|
||||
|
||||
|
||||
|
||||
def _main_(args):
|
||||
|
||||
input_path = args.input
|
||||
output_path = args.output
|
||||
thermal_path = args.input_thermal
|
||||
|
||||
mkdir(output_path)
|
||||
mkdir(output_path + 'images/')
|
||||
mkdir(output_path + 'anns/')
|
||||
|
||||
Excel = pandas.read_excel(input_path, sheet_name= 'Lista_Archivos_Fotos', header= 1)
|
||||
|
||||
for index_path in range(len(Excel.Archivo)):
|
||||
|
||||
if not pandas.notna(Excel.Archivo[index_path]):
|
||||
continue
|
||||
|
||||
path_Flir = Excel.loc[index_path]['Archivo']
|
||||
cod_falla = int(Excel.loc[index_path]['Cód. Falla'])
|
||||
sev = Excel.loc[index_path]['Severidad']
|
||||
|
||||
path_Flir_aux = thermal_path + '/'.join(path_Flir.split('/')[-2:])
|
||||
|
||||
if not os.path.isfile(path_Flir_aux):
|
||||
print ('No existe la imagen', path_Flir_aux)
|
||||
continue
|
||||
|
||||
flir = flirimageextractor.FlirImageExtractor()
|
||||
|
||||
try:
|
||||
flir.process_image(path_Flir_aux)
|
||||
I = flirimageextractor.FlirImageExtractor.get_thermal_np(flir)
|
||||
w, h = I.shape
|
||||
|
||||
except:
|
||||
print('No se puede leer la imagen Flir', path_Flir_aux)
|
||||
continue
|
||||
|
||||
dic_data = flir.get_metadata(path_Flir_aux)
|
||||
meas = [s for s in dic_data.keys() if "Meas" in s]
|
||||
q_bbox = len(meas)//3 # cada bbox tiene 3 parametros
|
||||
|
||||
param_bbox = []
|
||||
for num_bbox in range(1, q_bbox + 1):
|
||||
# Se guarda los parametros de los boundibox (xmin, ymin, width, height) width = xmax- xmin
|
||||
param_bbox.append(list(map(int, dic_data['Meas' + str(num_bbox) + 'Params'].split(' '))))
|
||||
|
||||
##### Save Image and create XML annotations type of fault
|
||||
path_save_img = output_path + 'images/' + '_'.join(path_Flir.split('/')[-2:])
|
||||
path_save_anns = output_path + 'anns/' + '_'.join(path_Flir.split('/')[-2:])
|
||||
path_save_anns = path_save_anns[:-4] + '.xml'
|
||||
|
||||
if not os.path.isfile(path_save_img):
|
||||
plt.imsave(path_save_img , I, cmap = 'gray')
|
||||
|
||||
#si el archivo ya existe se agregan mas anotaciones
|
||||
if os.path.isfile(path_save_anns):
|
||||
|
||||
et = ET.parse(path_save_anns)
|
||||
root = et.getroot()
|
||||
for box in param_bbox:
|
||||
|
||||
obj = ET.SubElement(root, "object")
|
||||
ET.SubElement(obj, "name").text = str(cod_falla)
|
||||
ET.SubElement(obj, "pose").text = 'Unspecified'
|
||||
ET.SubElement(obj, "truncated").text = str(0)
|
||||
ET.SubElement(obj, "difficult").text = str(0)
|
||||
bx = ET.SubElement(obj, "bndbox")
|
||||
ET.SubElement(bx, "xmin").text = str(box[0])
|
||||
ET.SubElement(bx, "ymin").text = str(box[1])
|
||||
ET.SubElement(bx, "xmax").text = str(box[0] + box[2])
|
||||
ET.SubElement(bx, "ymax").text = str(box[1] + box[3])
|
||||
|
||||
tree = ET.ElementTree(root)
|
||||
tree.write(path_save_anns)
|
||||
|
||||
## Si no existe se crea desde cero
|
||||
else:
|
||||
|
||||
root = ET.Element("annotation")
|
||||
ET.SubElement(root, "folder").text = output_path[:-1]
|
||||
ET.SubElement(root, "filename").text = '_'.join(path_Flir.split('/')[-2:])
|
||||
ET.SubElement(root, "path").text = path_save_img
|
||||
source = ET.SubElement(root, "source")
|
||||
ET.SubElement(source, "database").text = 'Unknown'
|
||||
size = ET.SubElement(root, "size")
|
||||
ET.SubElement(size, "width").text = str(w)
|
||||
ET.SubElement(size, "height").text = str(h)
|
||||
ET.SubElement(size, "depth").text = str(1)
|
||||
ET.SubElement(root, "segmented").text = '0'
|
||||
|
||||
for box in param_bbox:
|
||||
|
||||
obj = ET.SubElement(root, "object")
|
||||
ET.SubElement(obj, "name").text = str(cod_falla)
|
||||
ET.SubElement(obj, "pose").text = 'Unspecified'
|
||||
ET.SubElement(obj, "truncated").text = str(0)
|
||||
ET.SubElement(obj, "difficult").text = str(0)
|
||||
bx = ET.SubElement(obj, "bndbox")
|
||||
ET.SubElement(bx, "xmin").text = str(box[0])
|
||||
ET.SubElement(bx, "ymin").text = str(box[1])
|
||||
ET.SubElement(bx, "xmax").text = str(box[0] + box[2])
|
||||
ET.SubElement(bx, "ymax").text = str(box[1] + box[3])
|
||||
|
||||
tree = ET.ElementTree(root)
|
||||
tree.write(path_save_anns)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
files = []
|
||||
# r=root, d=directories, f = files
|
||||
for r, d, f in os.walk(input_path):
|
||||
for file in f:
|
||||
if '.jpg' in file:
|
||||
files.append(os.path.join(r, file))
|
||||
|
||||
for f in files:
|
||||
flir = flirimageextractor.FlirImageExtractor()
|
||||
print(f)
|
||||
try:
|
||||
flir.process_image(f)
|
||||
I = flirimageextractor.FlirImageExtractor.get_thermal_np(flir)
|
||||
except:
|
||||
I = plt.imread(f)
|
||||
#flir.save_images()
|
||||
#flir.plot()
|
||||
|
||||
|
||||
|
||||
#img = img.astype(np.int8)
|
||||
W = np.where(np.isnan(I))
|
||||
if np.shape(W)[1] > 0:
|
||||
|
||||
#xmax = np.max(np.amax(W,axis=0))
|
||||
ymax = np.max(np.amin(W,axis=1))
|
||||
img = I[:ymax,:]
|
||||
else:
|
||||
img = I
|
||||
|
||||
list_string = f.split('/')
|
||||
list_string[-3]+= '_jpg'
|
||||
f_aux = '/'.join(list_string)
|
||||
|
||||
mkdir(f_aux)
|
||||
plt.imsave(f_aux, img, cmap = 'gray')
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = argparser.parse_args()
|
||||
_main_(args)
|
||||
Reference in New Issue
Block a user