From 74b35f2415fbd36d59b3beec04152266ee13f1f7 Mon Sep 17 00:00:00 2001 From: Daniel Saavedra Date: Fri, 3 Apr 2020 13:22:59 -0300 Subject: [PATCH] Update README.md --- README.md | 23 +++++++++++++++++++---- 1 file changed, 19 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 2b398e3..d3f12c7 100755 --- a/README.md +++ b/README.md @@ -6,11 +6,11 @@ ## To do list: - [x] Import model detection (SSD & YOLO3) - [x] Model Panel Detection (SSD7) -- [ ] Model Panel Detection (YOLO3) +- [x] Model Panel Detection (YOLO3) - [x] Model Soiling Fault Detection (YOLO3) - [x] Model Diode Fault Detection (YOLO3) - [ ] Model Other Fault Detection -- [ ] Model Fault Panel Disconnect +- [x] Model Fault Panel Disconnect - [x] Example use Trained Model @@ -19,8 +19,8 @@ * Python 3.x * Numpy -* TensorFlow 1.x -* Keras 2.x +* TensorFlow 2.x +* Keras 2.x (in TensorFlow) * OpenCV * Beautiful Soup 4.x @@ -185,6 +185,12 @@ On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook), ![](Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg) + +### YOLO3 +On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%). + +![](Result_yolo3_panel/Mision%203_DJI_0045.jpg) + ## Soiling Fault Detector ### SSD300 On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%). @@ -206,8 +212,17 @@ On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Res ![](Result_yolo3_fault_4/result_yolo3_fault_4/Mision%2041_DJI_0044.jpg) +## Panel Disconnect Detector +### YOLO3 +To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is: +`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result` +To use this model, only the yolo3_panel detector model is needed. +![](Result_yolo3_panel/Mision%2011_DJI_0058.jpg) + +The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality. + # Contributing Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub.