Model Diode Fault

This commit is contained in:
dl-desktop
2020-02-19 20:05:14 -03:00
parent e91f29cd2b
commit 8397400b07
95 changed files with 765 additions and 17 deletions

2
.gitignore vendored
View File

@@ -13,5 +13,7 @@ result_ssd7_panel_cell/
Thermal/
fault_jpg/
fault_jpg_1/
keras-yolo3-master/log_experimento_fault_gpu/
Result_ssd300_fault_4/
*.h5

Binary file not shown.

View File

@@ -0,0 +1,49 @@
{
"model" : {
"min_input_size": 400,
"max_input_size": 400,
"anchors": [5,7, 10,14, 15, 15, 26,32, 45,119, 54,18, 94,59, 109,183, 200,21],
"labels": ["4"],
"backend": "full_yolo_backend.h5"
},
"train": {
"train_image_folder": "../Train&Test_D/Train/images/",
"train_annot_folder": "../Train&Test_D/Train/anns/",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"train_times": 1,
"batch_size": 2,
"learning_rate": 1e-4,
"nb_epochs": 500,
"warmup_epochs": 15,
"ignore_thresh": 0.5,
"gpus": "0,1",
"grid_scales": [1,1,1],
"obj_scale": 5,
"noobj_scale": 1,
"xywh_scale": 1,
"class_scale": 1,
"tensorboard_dir": "log_experimento_fault_gpu",
"saved_weights_name": "Result_yolo3_fault_4/yolo3_full_fault_4.h5",
"debug": true
},
"valid": {
"valid_image_folder": "../Train&Test_D/Test/images/",
"valid_annot_folder": "../Train&Test_D/Test/anns/",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"valid_times": 1
},
"test": {
"test_image_folder": "../Train&Test_D/Test/images/",
"test_annot_folder": "../Train&Test_D/Test/anns/",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"test_times": 1
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

View File

@@ -0,0 +1 @@
Tiempo promedio:0.138844244407885

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

View File

@@ -0,0 +1 @@
Tiempo promedio:0.4378786087036133

View File

@@ -0,0 +1,30 @@
Using TensorFlow backend.
WARNING:tensorflow:From /home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2020-02-19 16:17:24.179986: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2020-02-19 16:17:24.209183: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3199615000 Hz
2020-02-19 16:17:24.210187: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x560640e4b6d0 executing computations on platform Host. Devices:
2020-02-19 16:17:24.210226: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2020-02-19 16:17:24.338635: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-19 16:17:24.339381: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x560640c0e2b0 executing computations on platform CUDA. Devices:
2020-02-19 16:17:24.339443: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1060 6GB, Compute Capability 6.1
2020-02-19 16:17:24.339983: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845
pciBusID: 0000:22:00.0
totalMemory: 5.93GiB freeMemory: 5.63GiB
2020-02-19 16:17:24.340012: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2020-02-19 16:17:24.341434: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-19 16:17:24.341461: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2020-02-19 16:17:24.341473: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2020-02-19 16:17:24.341784: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5464 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:22:00.0, compute capability: 6.1)
WARNING:tensorflow:From /home/dl-desktop/Desktop/Rentadrone/model-definition/keras-yolo3-master/yolo.py:24: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
/home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/keras/callbacks.py:1065: UserWarning: `epsilon` argument is deprecated and will be removed, use `min_delta` instead.
warnings.warn('`epsilon` argument is deprecated and '
WARNING:tensorflow:From /home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
/home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.
warnings.warn('No training configuration found in save file: '

View File

@@ -0,0 +1,613 @@
Seen labels: {'4': 228}
Given labels: ['4']
Training on: ['4']
multi_gpu:2
Epoch 1/515
- 33s - loss: 726.0544 - yolo_layer_1_loss: 84.2750 - yolo_layer_2_loss: 231.4465 - yolo_layer_3_loss: 410.3330
Epoch 00001: loss improved from inf to 726.05442, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 2/515
- 10s - loss: 393.9888 - yolo_layer_1_loss: 47.5466 - yolo_layer_2_loss: 119.9978 - yolo_layer_3_loss: 226.4444
Epoch 00002: loss improved from 726.05442 to 393.98877, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 3/515
- 10s - loss: 196.3616 - yolo_layer_1_loss: 23.9760 - yolo_layer_2_loss: 49.1792 - yolo_layer_3_loss: 123.2064
Epoch 00003: loss improved from 393.98877 to 196.36163, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 4/515
- 10s - loss: 122.4840 - yolo_layer_1_loss: 13.9161 - yolo_layer_2_loss: 29.0959 - yolo_layer_3_loss: 79.4719
Epoch 00004: loss improved from 196.36163 to 122.48395, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 5/515
- 10s - loss: 89.0197 - yolo_layer_1_loss: 9.8237 - yolo_layer_2_loss: 21.2606 - yolo_layer_3_loss: 57.9354
Epoch 00005: loss improved from 122.48395 to 89.01973, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 6/515
- 10s - loss: 70.6128 - yolo_layer_1_loss: 8.0933 - yolo_layer_2_loss: 16.4381 - yolo_layer_3_loss: 46.0814
Epoch 00006: loss improved from 89.01973 to 70.61278, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 7/515
- 10s - loss: 59.0826 - yolo_layer_1_loss: 7.0661 - yolo_layer_2_loss: 13.7622 - yolo_layer_3_loss: 38.2543
Epoch 00007: loss improved from 70.61278 to 59.08262, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 8/515
- 10s - loss: 53.1177 - yolo_layer_1_loss: 6.8558 - yolo_layer_2_loss: 12.4646 - yolo_layer_3_loss: 33.7973
Epoch 00008: loss improved from 59.08262 to 53.11770, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 9/515
- 10s - loss: 47.1038 - yolo_layer_1_loss: 6.0617 - yolo_layer_2_loss: 11.0856 - yolo_layer_3_loss: 29.9565
Epoch 00009: loss improved from 53.11770 to 47.10379, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 10/515
- 10s - loss: 43.1862 - yolo_layer_1_loss: 5.6902 - yolo_layer_2_loss: 10.0752 - yolo_layer_3_loss: 27.4207
Epoch 00010: loss improved from 47.10379 to 43.18617, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 11/515
- 10s - loss: 38.9996 - yolo_layer_1_loss: 4.9702 - yolo_layer_2_loss: 9.6749 - yolo_layer_3_loss: 24.3545
Epoch 00011: loss improved from 43.18617 to 38.99961, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 12/515
- 10s - loss: 36.2720 - yolo_layer_1_loss: 4.6440 - yolo_layer_2_loss: 9.1025 - yolo_layer_3_loss: 22.5255
Epoch 00012: loss improved from 38.99961 to 36.27200, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 13/515
- 10s - loss: 34.6807 - yolo_layer_1_loss: 4.4700 - yolo_layer_2_loss: 8.5783 - yolo_layer_3_loss: 21.6324
Epoch 00013: loss improved from 36.27200 to 34.68073, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 14/515
- 10s - loss: 33.1336 - yolo_layer_1_loss: 4.3023 - yolo_layer_2_loss: 8.0604 - yolo_layer_3_loss: 20.7709
Epoch 00014: loss improved from 34.68073 to 33.13358, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 15/515
- 10s - loss: 31.7380 - yolo_layer_1_loss: 4.1771 - yolo_layer_2_loss: 7.9258 - yolo_layer_3_loss: 19.6351
Epoch 00015: loss improved from 33.13358 to 31.73803, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 16/515
- 10s - loss: 21.8009 - yolo_layer_1_loss: 0.4671 - yolo_layer_2_loss: 5.6075 - yolo_layer_3_loss: 15.7263
Epoch 00016: loss improved from 31.73803 to 21.80089, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 17/515
- 10s - loss: 16.8612 - yolo_layer_1_loss: 0.0610 - yolo_layer_2_loss: 1.9391 - yolo_layer_3_loss: 14.8611
Epoch 00017: loss improved from 21.80089 to 16.86119, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 18/515
- 10s - loss: 15.2481 - yolo_layer_1_loss: 0.0292 - yolo_layer_2_loss: 0.6464 - yolo_layer_3_loss: 14.5725
Epoch 00018: loss improved from 16.86119 to 15.24807, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 19/515
- 10s - loss: 15.0100 - yolo_layer_1_loss: 0.0195 - yolo_layer_2_loss: 0.3181 - yolo_layer_3_loss: 14.6724
Epoch 00019: loss improved from 15.24807 to 15.00999, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 20/515
- 10s - loss: 13.6310 - yolo_layer_1_loss: 0.0154 - yolo_layer_2_loss: 0.5403 - yolo_layer_3_loss: 13.0752
Epoch 00020: loss improved from 15.00999 to 13.63099, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 21/515
- 10s - loss: 12.7319 - yolo_layer_1_loss: 0.0131 - yolo_layer_2_loss: 0.0515 - yolo_layer_3_loss: 12.6672
Epoch 00021: loss improved from 13.63099 to 12.73188, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 22/515
- 10s - loss: 12.0606 - yolo_layer_1_loss: 0.0145 - yolo_layer_2_loss: 0.2898 - yolo_layer_3_loss: 11.7563
Epoch 00022: loss improved from 12.73188 to 12.06060, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 23/515
- 10s - loss: 11.8885 - yolo_layer_1_loss: 0.0118 - yolo_layer_2_loss: 0.0460 - yolo_layer_3_loss: 11.8307
Epoch 00023: loss improved from 12.06060 to 11.88852, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 24/515
- 10s - loss: 11.2758 - yolo_layer_1_loss: 0.0109 - yolo_layer_2_loss: 0.4777 - yolo_layer_3_loss: 10.7871
Epoch 00024: loss improved from 11.88852 to 11.27580, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 25/515
- 10s - loss: 10.5497 - yolo_layer_1_loss: 0.0110 - yolo_layer_2_loss: 0.0411 - yolo_layer_3_loss: 10.4977
Epoch 00025: loss improved from 11.27580 to 10.54969, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 26/515
- 10s - loss: 9.9959 - yolo_layer_1_loss: 0.0102 - yolo_layer_2_loss: 0.0396 - yolo_layer_3_loss: 9.9461
Epoch 00026: loss improved from 10.54969 to 9.99592, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 27/515
- 10s - loss: 11.2212 - yolo_layer_1_loss: 0.0111 - yolo_layer_2_loss: 0.6326 - yolo_layer_3_loss: 10.5775
Epoch 00027: loss did not improve from 9.99592
Epoch 28/515
- 10s - loss: 10.2780 - yolo_layer_1_loss: 0.0097 - yolo_layer_2_loss: 0.2736 - yolo_layer_3_loss: 9.9947
Epoch 00028: loss did not improve from 9.99592
Epoch 29/515
- 10s - loss: 10.8807 - yolo_layer_1_loss: 0.0096 - yolo_layer_2_loss: 0.7058 - yolo_layer_3_loss: 10.1653
Epoch 00029: loss did not improve from 9.99592
Epoch 30/515
- 10s - loss: 9.7811 - yolo_layer_1_loss: 0.0091 - yolo_layer_2_loss: 0.5160 - yolo_layer_3_loss: 9.2559
Epoch 00030: loss improved from 9.99592 to 9.78106, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 31/515
- 10s - loss: 9.9084 - yolo_layer_1_loss: 0.0092 - yolo_layer_2_loss: 0.0337 - yolo_layer_3_loss: 9.8655
Epoch 00031: loss did not improve from 9.78106
Epoch 32/515
- 10s - loss: 9.1395 - yolo_layer_1_loss: 0.0112 - yolo_layer_2_loss: 0.2804 - yolo_layer_3_loss: 8.8479
Epoch 00032: loss improved from 9.78106 to 9.13947, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 33/515
- 10s - loss: 9.7402 - yolo_layer_1_loss: 0.0083 - yolo_layer_2_loss: 0.5217 - yolo_layer_3_loss: 9.2103
Epoch 00033: loss did not improve from 9.13947
Epoch 34/515
- 10s - loss: 9.7369 - yolo_layer_1_loss: 0.0113 - yolo_layer_2_loss: 0.0360 - yolo_layer_3_loss: 9.6897
Epoch 00034: loss did not improve from 9.13947
Epoch 35/515
- 10s - loss: 9.5129 - yolo_layer_1_loss: 0.0095 - yolo_layer_2_loss: 0.7637 - yolo_layer_3_loss: 8.7397
Epoch 00035: loss did not improve from 9.13947
Epoch 36/515
- 10s - loss: 9.5966 - yolo_layer_1_loss: 0.0105 - yolo_layer_2_loss: 0.5166 - yolo_layer_3_loss: 9.0695
Epoch 00036: loss did not improve from 9.13947
Epoch 37/515
- 10s - loss: 9.5825 - yolo_layer_1_loss: 0.0124 - yolo_layer_2_loss: 0.7582 - yolo_layer_3_loss: 8.8119
Epoch 00037: loss did not improve from 9.13947
Epoch 38/515
- 10s - loss: 8.3391 - yolo_layer_1_loss: 0.0096 - yolo_layer_2_loss: 0.2692 - yolo_layer_3_loss: 8.0603
Epoch 00038: loss improved from 9.13947 to 8.33909, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 39/515
- 10s - loss: 8.7855 - yolo_layer_1_loss: 0.0081 - yolo_layer_2_loss: 0.5239 - yolo_layer_3_loss: 8.2536
Epoch 00039: loss did not improve from 8.33909
Epoch 40/515
- 10s - loss: 9.2574 - yolo_layer_1_loss: 0.0084 - yolo_layer_2_loss: 1.2789 - yolo_layer_3_loss: 7.9701
Epoch 00040: loss did not improve from 8.33909
Epoch 41/515
- 10s - loss: 8.8520 - yolo_layer_1_loss: 0.0092 - yolo_layer_2_loss: 0.5162 - yolo_layer_3_loss: 8.3265
Epoch 00041: loss did not improve from 8.33909
Epoch 42/515
- 10s - loss: 7.8263 - yolo_layer_1_loss: 0.0088 - yolo_layer_2_loss: 0.0273 - yolo_layer_3_loss: 7.7902
Epoch 00042: loss improved from 8.33909 to 7.82632, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 43/515
- 10s - loss: 8.2953 - yolo_layer_1_loss: 0.0072 - yolo_layer_2_loss: 0.0239 - yolo_layer_3_loss: 8.2642
Epoch 00043: loss did not improve from 7.82632
Epoch 44/515
- 10s - loss: 7.9194 - yolo_layer_1_loss: 0.0094 - yolo_layer_2_loss: 0.5233 - yolo_layer_3_loss: 7.3867
Epoch 00044: loss did not improve from 7.82632
Epoch 45/515
- 10s - loss: 8.6882 - yolo_layer_1_loss: 0.0096 - yolo_layer_2_loss: 0.3703 - yolo_layer_3_loss: 8.3084
Epoch 00045: loss did not improve from 7.82632
Epoch 46/515
- 10s - loss: 8.0836 - yolo_layer_1_loss: 0.0067 - yolo_layer_2_loss: 0.7542 - yolo_layer_3_loss: 7.3226
Epoch 00046: loss did not improve from 7.82632
Epoch 47/515
- 10s - loss: 6.7691 - yolo_layer_1_loss: 0.0066 - yolo_layer_2_loss: 0.2801 - yolo_layer_3_loss: 6.4823
Epoch 00047: loss improved from 7.82632 to 6.76905, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 48/515
- 10s - loss: 8.0070 - yolo_layer_1_loss: 0.0061 - yolo_layer_2_loss: 1.0069 - yolo_layer_3_loss: 6.9939
Epoch 00048: loss did not improve from 6.76905
Epoch 49/515
- 10s - loss: 7.9510 - yolo_layer_1_loss: 0.0084 - yolo_layer_2_loss: 0.2768 - yolo_layer_3_loss: 7.6658
Epoch 00049: loss did not improve from 6.76905
Epoch 50/515
- 10s - loss: 8.8343 - yolo_layer_1_loss: 0.0077 - yolo_layer_2_loss: 0.5067 - yolo_layer_3_loss: 8.3199
Epoch 00050: loss did not improve from 6.76905
Epoch 51/515
- 10s - loss: 8.7331 - yolo_layer_1_loss: 0.0079 - yolo_layer_2_loss: 0.2730 - yolo_layer_3_loss: 8.4523
Epoch 00051: loss did not improve from 6.76905
Epoch 52/515
- 10s - loss: 8.1853 - yolo_layer_1_loss: 0.0062 - yolo_layer_2_loss: 0.7594 - yolo_layer_3_loss: 7.4197
Epoch 00052: loss did not improve from 6.76905
Epoch 53/515
- 10s - loss: 7.1092 - yolo_layer_1_loss: 0.0068 - yolo_layer_2_loss: 0.5067 - yolo_layer_3_loss: 6.5956
Epoch 00053: loss did not improve from 6.76905
Epoch 54/515
- 10s - loss: 7.7841 - yolo_layer_1_loss: 0.0068 - yolo_layer_2_loss: 0.5143 - yolo_layer_3_loss: 7.2630
Epoch 00054: loss did not improve from 6.76905
Epoch 55/515
- 10s - loss: 6.9859 - yolo_layer_1_loss: 0.0056 - yolo_layer_2_loss: 0.2627 - yolo_layer_3_loss: 6.7177
Epoch 00055: loss did not improve from 6.76905
Epoch 56/515
- 10s - loss: 8.4959 - yolo_layer_1_loss: 0.0052 - yolo_layer_2_loss: 0.5028 - yolo_layer_3_loss: 7.9879
Epoch 00056: loss did not improve from 6.76905
Epoch 57/515
- 10s - loss: 7.1628 - yolo_layer_1_loss: 0.0052 - yolo_layer_2_loss: 0.4989 - yolo_layer_3_loss: 6.6587
Epoch 00057: loss did not improve from 6.76905
Epoch 58/515
- 10s - loss: 7.8487 - yolo_layer_1_loss: 0.0059 - yolo_layer_2_loss: 0.2567 - yolo_layer_3_loss: 7.5861
Epoch 00058: loss did not improve from 6.76905
Epoch 59/515
- 10s - loss: 6.9751 - yolo_layer_1_loss: 0.0058 - yolo_layer_2_loss: 0.0190 - yolo_layer_3_loss: 6.9504
Epoch 00059: loss did not improve from 6.76905
Epoch 60/515
- 10s - loss: 6.6019 - yolo_layer_1_loss: 0.0060 - yolo_layer_2_loss: 0.6095 - yolo_layer_3_loss: 5.9864
Epoch 00060: loss improved from 6.76905 to 6.60188, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 61/515
- 10s - loss: 6.5483 - yolo_layer_1_loss: 0.0059 - yolo_layer_2_loss: 0.2576 - yolo_layer_3_loss: 6.2847
Epoch 00061: loss improved from 6.60188 to 6.54826, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 62/515
- 10s - loss: 7.1750 - yolo_layer_1_loss: 0.0074 - yolo_layer_2_loss: 0.5132 - yolo_layer_3_loss: 6.6544
Epoch 00062: loss did not improve from 6.54826
Epoch 63/515
- 10s - loss: 6.9756 - yolo_layer_1_loss: 0.0142 - yolo_layer_2_loss: 0.0286 - yolo_layer_3_loss: 6.9328
Epoch 00063: loss did not improve from 6.54826
Epoch 64/515
- 10s - loss: 8.4003 - yolo_layer_1_loss: 0.0192 - yolo_layer_2_loss: 0.0325 - yolo_layer_3_loss: 8.3485
Epoch 00064: loss did not improve from 6.54826
Epoch 65/515
- 10s - loss: 8.0954 - yolo_layer_1_loss: 0.0149 - yolo_layer_2_loss: 0.8590 - yolo_layer_3_loss: 7.2215
Epoch 00065: loss did not improve from 6.54826
Epoch 66/515
- 10s - loss: 7.5083 - yolo_layer_1_loss: 0.0117 - yolo_layer_2_loss: 0.2697 - yolo_layer_3_loss: 7.2269
Epoch 00066: loss did not improve from 6.54826
Epoch 67/515
- 10s - loss: 6.9714 - yolo_layer_1_loss: 0.0102 - yolo_layer_2_loss: 0.5137 - yolo_layer_3_loss: 6.4475
Epoch 00067: loss did not improve from 6.54826
Epoch 68/515
- 10s - loss: 7.3321 - yolo_layer_1_loss: 0.0091 - yolo_layer_2_loss: 0.0224 - yolo_layer_3_loss: 7.3006
Epoch 00068: loss did not improve from 6.54826
Epoch 69/515
- 10s - loss: 6.8810 - yolo_layer_1_loss: 0.0081 - yolo_layer_2_loss: 0.5111 - yolo_layer_3_loss: 6.3619
Epoch 00069: loss did not improve from 6.54826
Epoch 70/515
- 10s - loss: 8.6055 - yolo_layer_1_loss: 0.0076 - yolo_layer_2_loss: 0.2585 - yolo_layer_3_loss: 8.3393
Epoch 00070: loss did not improve from 6.54826
Epoch 71/515
- 10s - loss: 7.5927 - yolo_layer_1_loss: 0.0072 - yolo_layer_2_loss: 0.2695 - yolo_layer_3_loss: 7.3161
Epoch 00071: loss did not improve from 6.54826
Epoch 72/515
- 10s - loss: 6.6941 - yolo_layer_1_loss: 0.0066 - yolo_layer_2_loss: 0.2585 - yolo_layer_3_loss: 6.4290
Epoch 00072: loss did not improve from 6.54826
Epoch 73/515
- 10s - loss: 8.3576 - yolo_layer_1_loss: 0.0063 - yolo_layer_2_loss: 0.7427 - yolo_layer_3_loss: 7.6086
Epoch 00073: loss did not improve from 6.54826
Epoch 74/515
- 10s - loss: 6.6912 - yolo_layer_1_loss: 0.0058 - yolo_layer_2_loss: 0.0154 - yolo_layer_3_loss: 6.6700
Epoch 00074: loss did not improve from 6.54826
Epoch 75/515
- 10s - loss: 6.7796 - yolo_layer_1_loss: 0.0058 - yolo_layer_2_loss: 0.2638 - yolo_layer_3_loss: 6.5100
Epoch 00075: loss did not improve from 6.54826
Epoch 76/515
- 10s - loss: 7.0419 - yolo_layer_1_loss: 0.0059 - yolo_layer_2_loss: 0.5052 - yolo_layer_3_loss: 6.5308
Epoch 00076: loss did not improve from 6.54826
Epoch 00076: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
Epoch 77/515
- 10s - loss: 7.1290 - yolo_layer_1_loss: 0.0058 - yolo_layer_2_loss: 0.0180 - yolo_layer_3_loss: 7.1052
Epoch 00077: loss did not improve from 6.54826
Epoch 78/515
- 10s - loss: 6.9018 - yolo_layer_1_loss: 0.0055 - yolo_layer_2_loss: 0.0172 - yolo_layer_3_loss: 6.8791
Epoch 00078: loss did not improve from 6.54826
Epoch 79/515
- 10s - loss: 7.0771 - yolo_layer_1_loss: 0.0056 - yolo_layer_2_loss: 0.2585 - yolo_layer_3_loss: 6.8129
Epoch 00079: loss did not improve from 6.54826
Epoch 80/515
- 10s - loss: 8.5848 - yolo_layer_1_loss: 0.0054 - yolo_layer_2_loss: 0.6222 - yolo_layer_3_loss: 7.9573
Epoch 00080: loss did not improve from 6.54826
Epoch 81/515
- 10s - loss: 6.4367 - yolo_layer_1_loss: 0.0057 - yolo_layer_2_loss: 0.5940 - yolo_layer_3_loss: 5.8370
Epoch 00081: loss improved from 6.54826 to 6.43666, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 82/515
- 10s - loss: 6.3787 - yolo_layer_1_loss: 0.0070 - yolo_layer_2_loss: 0.0140 - yolo_layer_3_loss: 6.3577
Epoch 00082: loss improved from 6.43666 to 6.37867, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 83/515
- 10s - loss: 6.9801 - yolo_layer_1_loss: 0.0065 - yolo_layer_2_loss: 1.3232 - yolo_layer_3_loss: 5.6504
Epoch 00083: loss did not improve from 6.37867
Epoch 84/515
- 10s - loss: 5.0361 - yolo_layer_1_loss: 0.0073 - yolo_layer_2_loss: 0.2561 - yolo_layer_3_loss: 4.7727
Epoch 00084: loss improved from 6.37867 to 5.03612, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 85/515
- 10s - loss: 6.0425 - yolo_layer_1_loss: 0.0059 - yolo_layer_2_loss: 0.2507 - yolo_layer_3_loss: 5.7859
Epoch 00085: loss did not improve from 5.03612
Epoch 86/515
- 10s - loss: 6.8196 - yolo_layer_1_loss: 0.0054 - yolo_layer_2_loss: 0.5974 - yolo_layer_3_loss: 6.2168
Epoch 00086: loss did not improve from 5.03612
Epoch 87/515
- 10s - loss: 5.3770 - yolo_layer_1_loss: 0.0048 - yolo_layer_2_loss: 0.0125 - yolo_layer_3_loss: 5.3597
Epoch 00087: loss did not improve from 5.03612
Epoch 88/515
- 10s - loss: 6.9503 - yolo_layer_1_loss: 0.0041 - yolo_layer_2_loss: 0.8411 - yolo_layer_3_loss: 6.1051
Epoch 00088: loss did not improve from 5.03612
Epoch 89/515
- 10s - loss: 6.4121 - yolo_layer_1_loss: 0.0045 - yolo_layer_2_loss: 0.2549 - yolo_layer_3_loss: 6.1526
Epoch 00089: loss did not improve from 5.03612
Epoch 90/515
- 10s - loss: 6.3360 - yolo_layer_1_loss: 0.0042 - yolo_layer_2_loss: 0.2539 - yolo_layer_3_loss: 6.0779
Epoch 00090: loss did not improve from 5.03612
Epoch 91/515
- 10s - loss: 6.5093 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 0.4877 - yolo_layer_3_loss: 6.0172
Epoch 00091: loss did not improve from 5.03612
Epoch 92/515
- 10s - loss: 6.4743 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 0.7429 - yolo_layer_3_loss: 5.7275
Epoch 00092: loss did not improve from 5.03612
Epoch 93/515
- 10s - loss: 6.2027 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.0106 - yolo_layer_3_loss: 6.1886
Epoch 00093: loss did not improve from 5.03612
Epoch 94/515
- 10s - loss: 6.3408 - yolo_layer_1_loss: 0.0050 - yolo_layer_2_loss: 0.8367 - yolo_layer_3_loss: 5.4990
Epoch 00094: loss did not improve from 5.03612
Epoch 95/515
- 10s - loss: 6.3874 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.2505 - yolo_layer_3_loss: 6.1334
Epoch 00095: loss did not improve from 5.03612
Epoch 96/515
- 10s - loss: 5.7374 - yolo_layer_1_loss: 0.0037 - yolo_layer_2_loss: 0.4958 - yolo_layer_3_loss: 5.2379
Epoch 00096: loss did not improve from 5.03612
Epoch 97/515
- 10s - loss: 6.6679 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.2515 - yolo_layer_3_loss: 6.4133
Epoch 00097: loss did not improve from 5.03612
Epoch 98/515
- 10s - loss: 7.2021 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.8314 - yolo_layer_3_loss: 6.3673
Epoch 00098: loss did not improve from 5.03612
Epoch 99/515
- 10s - loss: 4.8342 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.3480 - yolo_layer_3_loss: 4.4827
Epoch 00099: loss improved from 5.03612 to 4.83417, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 100/515
- 10s - loss: 6.7739 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.9795 - yolo_layer_3_loss: 5.7910
Epoch 00100: loss did not improve from 4.83417
Epoch 101/515
- 10s - loss: 5.7780 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.2494 - yolo_layer_3_loss: 5.5250
Epoch 00101: loss did not improve from 4.83417
Epoch 102/515
- 10s - loss: 5.2681 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.0107 - yolo_layer_3_loss: 5.2538
Epoch 00102: loss did not improve from 4.83417
Epoch 103/515
- 10s - loss: 5.4442 - yolo_layer_1_loss: 0.0037 - yolo_layer_2_loss: 0.2522 - yolo_layer_3_loss: 5.1884
Epoch 00103: loss did not improve from 4.83417
Epoch 104/515
- 10s - loss: 5.6337 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 0.2557 - yolo_layer_3_loss: 5.3742
Epoch 00104: loss did not improve from 4.83417
Epoch 105/515
- 10s - loss: 6.6036 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.2554 - yolo_layer_3_loss: 6.3443
Epoch 00105: loss did not improve from 4.83417
Epoch 106/515
- 10s - loss: 6.0000 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 1.0218 - yolo_layer_3_loss: 4.9754
Epoch 00106: loss did not improve from 4.83417
Epoch 107/515
- 10s - loss: 6.0366 - yolo_layer_1_loss: 0.0033 - yolo_layer_2_loss: 0.4257 - yolo_layer_3_loss: 5.6075
Epoch 00107: loss did not improve from 4.83417
Epoch 108/515
- 10s - loss: 6.8796 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.7311 - yolo_layer_3_loss: 6.1452
Epoch 00108: loss did not improve from 4.83417
Epoch 109/515
- 10s - loss: 6.2239 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.0098 - yolo_layer_3_loss: 6.2108
Epoch 00109: loss did not improve from 4.83417
Epoch 110/515
- 10s - loss: 6.6404 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 0.4927 - yolo_layer_3_loss: 6.1445
Epoch 00110: loss did not improve from 4.83417
Epoch 111/515
- 10s - loss: 5.9316 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.2520 - yolo_layer_3_loss: 5.6758
Epoch 00111: loss did not improve from 4.83417
Epoch 112/515
- 10s - loss: 6.7635 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 0.9262 - yolo_layer_3_loss: 5.8330
Epoch 00112: loss did not improve from 4.83417
Epoch 113/515
- 10s - loss: 5.3281 - yolo_layer_1_loss: 0.0042 - yolo_layer_2_loss: 0.2530 - yolo_layer_3_loss: 5.0710
Epoch 00113: loss did not improve from 4.83417
Epoch 114/515
- 10s - loss: 6.5422 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 0.7378 - yolo_layer_3_loss: 5.8001
Epoch 00114: loss did not improve from 4.83417
Epoch 00114: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
Epoch 115/515
- 10s - loss: 5.9115 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.0103 - yolo_layer_3_loss: 5.8976
Epoch 00115: loss did not improve from 4.83417
Epoch 116/515
- 10s - loss: 5.3763 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.0092 - yolo_layer_3_loss: 5.3637
Epoch 00116: loss did not improve from 4.83417
Epoch 117/515
- 10s - loss: 6.1688 - yolo_layer_1_loss: 0.0049 - yolo_layer_2_loss: 0.8395 - yolo_layer_3_loss: 5.3243
Epoch 00117: loss did not improve from 4.83417
Epoch 118/515
- 10s - loss: 5.5325 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.0085 - yolo_layer_3_loss: 5.5206
Epoch 00118: loss did not improve from 4.83417
Epoch 119/515
- 10s - loss: 6.6042 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 0.8394 - yolo_layer_3_loss: 5.7611
Epoch 00119: loss did not improve from 4.83417
Epoch 120/515
- 10s - loss: 5.3633 - yolo_layer_1_loss: 0.0033 - yolo_layer_2_loss: 0.7345 - yolo_layer_3_loss: 4.6255
Epoch 00120: loss did not improve from 4.83417
Epoch 121/515
- 10s - loss: 5.5602 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 0.0095 - yolo_layer_3_loss: 5.5469
Epoch 00121: loss did not improve from 4.83417
Epoch 122/515
- 10s - loss: 6.2532 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 0.4873 - yolo_layer_3_loss: 5.7619
Epoch 00122: loss did not improve from 4.83417
Epoch 123/515
- 10s - loss: 5.1735 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 0.4890 - yolo_layer_3_loss: 4.6801
Epoch 00123: loss did not improve from 4.83417
Epoch 124/515
- 10s - loss: 4.7281 - yolo_layer_1_loss: 0.0046 - yolo_layer_2_loss: 0.0092 - yolo_layer_3_loss: 4.7143
Epoch 00124: loss improved from 4.83417 to 4.72807, saving model to ../Result_yolo3_fault_4/yolo3_full_fault_4.h5
Epoch 125/515
- 10s - loss: 5.1092 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 0.0093 - yolo_layer_3_loss: 5.0959
Epoch 00125: loss did not improve from 4.72807
Epoch 126/515
- 10s - loss: 5.0732 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 0.0092 - yolo_layer_3_loss: 5.0601
Epoch 00126: loss did not improve from 4.72807
Epoch 127/515
- 10s - loss: 5.7071 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 0.4911 - yolo_layer_3_loss: 5.2121
Epoch 00127: loss did not improve from 4.72807
Epoch 128/515
- 10s - loss: 5.5421 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.2495 - yolo_layer_3_loss: 5.2890
Epoch 00128: loss did not improve from 4.72807
Epoch 129/515
- 10s - loss: 5.4704 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.7413 - yolo_layer_3_loss: 4.7260
Epoch 00129: loss did not improve from 4.72807
Epoch 130/515
- 10s - loss: 5.4362 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.2483 - yolo_layer_3_loss: 5.1844
Epoch 00130: loss did not improve from 4.72807
Epoch 131/515
- 10s - loss: 6.3516 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 0.2474 - yolo_layer_3_loss: 6.1010
Epoch 00131: loss did not improve from 4.72807
Epoch 132/515
- 10s - loss: 6.1326 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.7401 - yolo_layer_3_loss: 5.3886
Epoch 00132: loss did not improve from 4.72807
Epoch 133/515
- 10s - loss: 5.6244 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.3499 - yolo_layer_3_loss: 5.2713
Epoch 00133: loss did not improve from 4.72807
Epoch 134/515
- 10s - loss: 5.5968 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 0.9701 - yolo_layer_3_loss: 4.6232
Epoch 00134: loss did not improve from 4.72807
Epoch 135/515
- 10s - loss: 5.3824 - yolo_layer_1_loss: 0.0030 - yolo_layer_2_loss: 0.4944 - yolo_layer_3_loss: 4.8850
Epoch 00135: loss did not improve from 4.72807
Epoch 136/515
- 10s - loss: 6.1405 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 0.4968 - yolo_layer_3_loss: 5.6412
Epoch 00136: loss did not improve from 4.72807
Epoch 137/515
- 10s - loss: 5.7925 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 0.9721 - yolo_layer_3_loss: 4.8178
Epoch 00137: loss did not improve from 4.72807
Epoch 138/515
- 10s - loss: 4.9430 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.2485 - yolo_layer_3_loss: 4.6915
Epoch 00138: loss did not improve from 4.72807
Epoch 139/515
- 10s - loss: 5.6594 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.4857 - yolo_layer_3_loss: 5.1708
Epoch 00139: loss did not improve from 4.72807
Epoch 00139: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.
Epoch 140/515
- 10s - loss: 6.5497 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 0.4900 - yolo_layer_3_loss: 6.0570
Epoch 00140: loss did not improve from 4.72807
Epoch 141/515
- 10s - loss: 5.2475 - yolo_layer_1_loss: 0.0025 - yolo_layer_2_loss: 0.0065 - yolo_layer_3_loss: 5.2386
Epoch 00141: loss did not improve from 4.72807
Epoch 142/515
- 10s - loss: 5.8300 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 0.8282 - yolo_layer_3_loss: 4.9996
Epoch 00142: loss did not improve from 4.72807
Epoch 143/515
- 10s - loss: 5.7350 - yolo_layer_1_loss: 0.0023 - yolo_layer_2_loss: 0.8285 - yolo_layer_3_loss: 4.9042
Epoch 00143: loss did not improve from 4.72807
Epoch 144/515
- 10s - loss: 5.2880 - yolo_layer_1_loss: 0.0019 - yolo_layer_2_loss: 0.5863 - yolo_layer_3_loss: 4.6998
Epoch 00144: loss did not improve from 4.72807
Epoch 145/515
- 10s - loss: 5.1878 - yolo_layer_1_loss: 0.0024 - yolo_layer_2_loss: 0.2494 - yolo_layer_3_loss: 4.9360
Epoch 00145: loss did not improve from 4.72807
Epoch 146/515
- 10s - loss: 5.8840 - yolo_layer_1_loss: 0.0020 - yolo_layer_2_loss: 0.2472 - yolo_layer_3_loss: 5.6349
Epoch 00146: loss did not improve from 4.72807
Epoch 147/515
- 10s - loss: 6.6453 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 1.0018 - yolo_layer_3_loss: 5.6410
Epoch 00147: loss did not improve from 4.72807
Epoch 148/515
- 10s - loss: 4.9427 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 0.0062 - yolo_layer_3_loss: 4.9340
Epoch 00148: loss did not improve from 4.72807
Epoch 149/515
- 10s - loss: 5.4675 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 0.4897 - yolo_layer_3_loss: 4.9756
Epoch 00149: loss did not improve from 4.72807
Epoch 00149: early stopping
228 instances of class 4 with average precision: 0.6622
mAP using the weighted average of precisions among classes: 0.6622
mAP: 0.6622

View File

@@ -0,0 +1,22 @@
Using TensorFlow backend.
WARNING:tensorflow:From /home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2020-02-19 16:44:36.297149: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2020-02-19 16:44:36.320954: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3199615000 Hz
2020-02-19 16:44:36.321969: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x55a499e9e4a0 executing computations on platform Host. Devices:
2020-02-19 16:44:36.322003: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2020-02-19 16:44:36.411803: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-19 16:44:36.412452: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x55a499b5acf0 executing computations on platform CUDA. Devices:
2020-02-19 16:44:36.412490: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1060 6GB, Compute Capability 6.1
2020-02-19 16:44:36.412953: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845
pciBusID: 0000:22:00.0
totalMemory: 5.93GiB freeMemory: 5.64GiB
2020-02-19 16:44:36.412981: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2020-02-19 16:44:36.414312: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-19 16:44:36.414333: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2020-02-19 16:44:36.414344: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2020-02-19 16:44:36.414622: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5473 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:22:00.0, compute capability: 6.1)
/home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.
warnings.warn('No training configuration found in save file: '

View File

@@ -0,0 +1,4 @@
dict_items([(0, (0.6619091605752383, 228.0))])
228 instances of class 4 with average precision: 0.6619
mAP using the weighted average of precisions among classes: 0.6619
mAP: 0.6619

View File

@@ -14,14 +14,21 @@
"batch_size": 12,
"learning_rate": 1e-4,
"warmup_epochs": 3,
"saved_weights_name": "../Result_ssd300_fault_4/experimento_ssd300_fault_1.h5",
"debug": true
"nb_epochs": 100,
"saved_weights_name": "../Result_ssd300_fault_4/ssd300_fault_4.h5",
"debug": false
},
"valid": {
"valid_image_folder": "../Train&Test_D/Test/images/",
"valid_annot_folder": "../Train&Test_D/Test/anns/",
"valid_image_set_filename": "../Train&Test_D/Test/test.txt"
},
"test": {
"test_image_folder": "Train&Test_D/Test/images",
"test_annot_folder": "Train&Test_D/Test/anns",
"test_image_set_filename": "Train&Test_D/Test/test.txt"
"test_image_folder": "../Train&Test_D/Test/images",
"test_annot_folder": "../Train&Test_D/Test/anns",
"test_image_set_filename": "../Train&Test_D/Test/test.txt"
}
}

View File

@@ -10,13 +10,13 @@
"train": {
"train_image_folder": "../Train&Test_D/Train/images/",
"train_annot_folder": "../Train&Test_D/Train/anns/",
"cache_name": "../Resultados_yolo3_fault_4/experimento_fault_1_gpu.pkl",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"train_times": 1,
"batch_size": 2,
"learning_rate": 1e-4,
"nb_epochs": 200,
"nb_epochs": 500,
"warmup_epochs": 15,
"ignore_thresh": 0.5,
"gpus": "0,1",
@@ -28,21 +28,21 @@
"class_scale": 1,
"tensorboard_dir": "log_experimento_fault_gpu",
"saved_weights_name": "../Resultados_yolo3_fault_4/experimento_yolo3_full_fault.h5",
"saved_weights_name": "../Result_yolo3_fault_4/yolo3_full_fault_4.h5",
"debug": true
},
"valid": {
"valid_image_folder": "../Train&Test_D/Test/images/",
"valid_annot_folder": "../Train&Test_D/Test/anns/",
"cache_name": "../Resultados_yolo3_fault_4/val_fault_1.pkl",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"valid_times": 1
},
"test": {
"test_image_folder": "../Train&Test_D/Test/images/",
"test_annot_folder": "../Train&Test_D/Test/anns/",
"cache_name": "../Resultados_yolo3_fault_4/test_fault_1.pkl",
"cache_name": "../Result_yolo3_fault_4/Result_yolo3_fault_4.pkl",
"test_times": 1
}

View File

@@ -396,3 +396,22 @@ epoch,loss,val_loss
62,3.3814005301952363,2.710524764060974
63,3.3771395704865457,2.6270531114266844
64,3.4597128042459486,2.7650137408898803
0,630.127294934409,6.02763032913208
1,187.4431803817749,8.335076332092285
2,8.411521573747907,6.235496997833252
3,6.801279882703509,5.4048285484313965
4,6.392639285496303,5.154904365539551
5,5.9362107827322825,5.505146026611328
6,5.985494954790388,5.103407859802246
7,5.653194137573243,4.9200263023376465
8,4691810.255841568,7.795283317565918
9,8.263482121603829,5.9485979080200195
10,7.167019401550293,6.296602725982666
11,6.803352179391044,5.845494270324707
12,6.5856634140014645,5.75946569442749
13,6.437523976462228,5.693921089172363
14,6.3277562190464565,6.104617118835449
15,6.289487031119211,5.413284778594971
16,6.193396027156285,5.640974044799805
17,6.046464665004185,5.2643256187438965
18,5.998249182564872,5.260303974151611
1 epoch loss val_loss
396 62 3.3814005301952363 2.710524764060974
397 63 3.3771395704865457 2.6270531114266844
398 64 3.4597128042459486 2.7650137408898803
399 0 630.127294934409 6.02763032913208
400 1 187.4431803817749 8.335076332092285
401 2 8.411521573747907 6.235496997833252
402 3 6.801279882703509 5.4048285484313965
403 4 6.392639285496303 5.154904365539551
404 5 5.9362107827322825 5.505146026611328
405 6 5.985494954790388 5.103407859802246
406 7 5.653194137573243 4.9200263023376465
407 8 4691810.255841568 7.795283317565918
408 9 8.263482121603829 5.9485979080200195
409 10 7.167019401550293 6.296602725982666
410 11 6.803352179391044 5.845494270324707
411 12 6.5856634140014645 5.75946569442749
412 13 6.437523976462228 5.693921089172363
413 14 6.3277562190464565 6.104617118835449
414 15 6.289487031119211 5.413284778594971
415 16 6.193396027156285 5.640974044799805
416 17 6.046464665004185 5.2643256187438965
417 18 5.998249182564872 5.260303974151611

View File

@@ -422,7 +422,7 @@ def _main_(args):
initial_epoch = 0
final_epoch = config['train']['nb_epochs']
#final_epoch = 20
steps_per_epoch = 10000
steps_per_epoch = 500
history = model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,

View File

@@ -1,5 +1,5 @@
import os
import argparse
def makedirs(path):
@@ -21,9 +21,9 @@ def _main_(args):
makedirs(output_path)
print ('Training ssd')
os.system('cd ssd_keras-master/ && python train.py -c ../' + config_path.json+ ' > ../' + output_path + '/ssd.output 2> ../' + output_path +'/ssd.err')
os.system('cd ssd_keras-master/ && python train.py -c ../' + config_path + ' > ../' + output_path + '/ssd.output 2> ../' + output_path +'/ssd.err')
print ('Testing ssd')
os.system('cd ssd_keras-master/ && python evaluate.py -c ../' + config_path.json+ ' > ../' + output_path + '/ssd_test.output 2> ../' + output_path +'/ssd_test.err')
os.system('cd ssd_keras-master/ && python evaluate.py -c ../' + config_path + ' > ../' + output_path + '/ssd_test.output 2> ../' + output_path +'/ssd_test.err')
if __name__ == '__main__':

View File

@@ -1,5 +1,5 @@
import os
import argparse
def makedirs(path):
try:
@@ -20,9 +20,9 @@ def _main_(args):
makedirs(output_path)
print ('Training full_yolo3')
os.system('cd keras-yolo3-master/ && python train.py -c ../' + config_path.json+ ' > ../' + output_path + '/yolo3_full_yolo.output 2> ../' + output_path +'/yolo3_full_yolo.err')
os.system('cd keras-yolo3-master/ && python train.py -c ../' + config_path + ' > ../' + output_path + '/yolo3_full_yolo.output 2> ../' + output_path +'/yolo3_full_yolo.err')
print('Test full_yolo3')
os.system('cd keras-yolo3-master/ && python evaluate.py -c ../' + config_path.json+ ' > ../' + output_path + '/yolo3_full_yolo_test.output 2> ../' + output_path +'/yolo3_full_yolo_test.err')
os.system('cd keras-yolo3-master/ && python evaluate.py -c ../' + config_path+ ' > ../' + output_path + '/yolo3_full_yolo_test.output 2> ../' + output_path +'/yolo3_full_yolo_test.err')
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='train and evaluate ssd model on any dataset')