diff --git a/README.md b/README.md index d3f12c7..459bfc0 100755 --- a/README.md +++ b/README.md @@ -31,6 +31,11 @@ The models used for detection are SSD [SSD: Single Shot MultiBox Detector](https Grab the pretrained weights of SSD and YOLO3 from [Drive_Weights](https://drive.google.com/drive/folders/1LSc9FkAwJrAAT8pAUWz8aax_biFAMMXS?usp=sharing) +| Model | Pretrained Weights | +|:-----------:|:-------------------:| +| SSD7/SSD300 | [Weight VGG16](https://drive.google.com/open?id=1VHTx28tGI94yFqwT_WHp-xkx_8Hh_A31)| +| YOLO3 | [Weight Full Yolo3](https://drive.google.com/open?id=1cnCQHl-TnOrwb-leug1I0O9vMBaSwJLt)| + ## Type of Data The images used for the design of this model were extracted by air analysis, specifically: FLIR aerial radiometric thermal infrared pictures, taken by UAV (R-JPEG format). Which were converted into .jpg images for the training of these detection models. Example FLIR image: @@ -177,6 +182,15 @@ Compute the mAP performance of the model defined in `saved_weights_name` on the # Result All of weights of this trained model grab from [Drive_Weights](https://drive.google.com/drive/folders/1LSc9FkAwJrAAT8pAUWz8aax_biFAMMXS?usp=sharing) + +| Model | Pretrained Weights | Config | +|:--------------:|:------------------:|:--------:| +| SSD7 Panel | [weight](https://drive.google.com/open?id=1qNjfAp9sW1VJh8ewnb3NKuafhZockTqV) | [config](Result_ssd7_panel/config_7_panel.json) | +| SSD300 Soiling | [weight](https://drive.google.com/open?id=1IiOyYW8yPAh4IALbM_ZVqRhLdxV-ZSPw) | [config](config_300_fault_1.json) | +| YOLO3 Panel | [weight](https://drive.google.com/open?id=14zgtgDJv3KTvhRC-VOz6sqsGPC_bdrL1) | [config](config_full_yolo_panel_infer.json) | +| YOLO3 Soiling | [weight](https://drive.google.com/open?id=1YLgkn1wL5xAGOpwd2gzdfsJVGYPzszn-) | [config](config_full_yolo_fault_1_infer.json) | +| YOLO3 Diode | [weight](https://drive.google.com/open?id=1VUtrK9JVTbzBw5dX7_dgLTMToFHbAJl1) | [config](config_full_yolo_fault_4_infer.json) | + ## Panel Detector ### SDD7 On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook), weight and result of this model (mAP 89.8%).