Summary
This commit is contained in:
62
keras-yolo3-master/utils/multi_gpu_model.py
Executable file
62
keras-yolo3-master/utils/multi_gpu_model.py
Executable file
@@ -0,0 +1,62 @@
|
||||
from keras.layers import Lambda, concatenate
|
||||
from keras.models import Model
|
||||
import tensorflow as tf
|
||||
|
||||
def multi_gpu_model(model, gpus):
|
||||
if isinstance(gpus, (list, tuple)):
|
||||
num_gpus = len(gpus)
|
||||
target_gpu_ids = gpus
|
||||
else:
|
||||
num_gpus = gpus
|
||||
target_gpu_ids = range(num_gpus)
|
||||
|
||||
def get_slice(data, i, parts):
|
||||
shape = tf.shape(data)
|
||||
batch_size = shape[:1]
|
||||
input_shape = shape[1:]
|
||||
step = batch_size // parts
|
||||
if i == num_gpus - 1:
|
||||
size = batch_size - step * i
|
||||
else:
|
||||
size = step
|
||||
size = tf.concat([size, input_shape], axis=0)
|
||||
stride = tf.concat([step, input_shape * 0], axis=0)
|
||||
start = stride * i
|
||||
return tf.slice(data, start, size)
|
||||
|
||||
all_outputs = []
|
||||
for i in range(len(model.outputs)):
|
||||
all_outputs.append([])
|
||||
|
||||
# Place a copy of the model on each GPU,
|
||||
# each getting a slice of the inputs.
|
||||
for i, gpu_id in enumerate(target_gpu_ids):
|
||||
with tf.device('/gpu:%d' % gpu_id):
|
||||
with tf.name_scope('replica_%d' % gpu_id):
|
||||
inputs = []
|
||||
# Retrieve a slice of the input.
|
||||
for x in model.inputs:
|
||||
input_shape = tuple(x.get_shape().as_list())[1:]
|
||||
slice_i = Lambda(get_slice,
|
||||
output_shape=input_shape,
|
||||
arguments={'i': i,
|
||||
'parts': num_gpus})(x)
|
||||
inputs.append(slice_i)
|
||||
|
||||
# Apply model on slice
|
||||
# (creating a model replica on the target device).
|
||||
outputs = model(inputs)
|
||||
if not isinstance(outputs, list):
|
||||
outputs = [outputs]
|
||||
|
||||
# Save the outputs for merging back together later.
|
||||
for o in range(len(outputs)):
|
||||
all_outputs[o].append(outputs[o])
|
||||
|
||||
# Merge outputs on CPU.
|
||||
with tf.device('/cpu:0'):
|
||||
merged = []
|
||||
for name, outputs in zip(model.output_names, all_outputs):
|
||||
merged.append(concatenate(outputs,
|
||||
axis=0, name=name))
|
||||
return Model(model.inputs, merged)
|
||||
Reference in New Issue
Block a user