This commit is contained in:
dl-desktop
2020-02-06 16:47:03 -03:00
parent 6328265287
commit b586f22bf0
318 changed files with 25111 additions and 664 deletions

4
.gitignore vendored
View File

@@ -3,13 +3,13 @@ panel/
panel_jpg/
result_ssd7_panel_1/
result_ssd7_panel_2/
Train&Test_A/
Train&Test_1/
Train&Test_C/
Train&Test_A/
Train&Test_S/
result_ssd7_panel_cell/
Thermal/
fault_jpg/
fault_jpg_1/
*.h5

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -79,7 +79,7 @@
"import xml.etree.cElementTree as ET\n",
"\n",
"import sys\n",
"sys.path += [os.path.abspath('../ssd_keras-master')]\n",
"sys.path += [os.path.abspath('ssd_keras-master')]\n",
"\n",
"from keras_loss_function.keras_ssd_loss import SSDLoss\n",
"from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes\n",

View File

@@ -194,7 +194,7 @@
"import xml.etree.cElementTree as ET\n",
"\n",
"import sys\n",
"sys.path += [os.path.abspath('../ssd_keras-master')]\n",
"sys.path += [os.path.abspath('ssd_keras-master')]\n",
"\n",
"from keras_loss_function.keras_ssd_loss import SSDLoss\n",
"from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes\n",
@@ -1703,13 +1703,7 @@
"Epoch 00211: val_loss did not improve from 3.37916\n",
"Epoch 212/300\n",
"\n",
"Epoch 00212: LearningRateScheduler setting learning rate to 1e-05.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 00212: LearningRateScheduler setting learning rate to 1e-05.\n",
"100/100 [==============================] - 23s 234ms/step - loss: 3.7629 - val_loss: 3.3957\n",
"\n",
"Epoch 00212: val_loss did not improve from 3.37916\n",
@@ -2141,13 +2135,7 @@
"Epoch 00282: val_loss improved from 3.36354 to 3.36264, saving model to experimento_ssd7_fault_1.h5\n",
"Epoch 283/300\n",
"\n",
"Epoch 00283: LearningRateScheduler setting learning rate to 1e-05.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 00283: LearningRateScheduler setting learning rate to 1e-05.\n",
"100/100 [==============================] - 23s 228ms/step - loss: 3.6678 - val_loss: 3.3912\n",
"\n",
"Epoch 00283: val_loss did not improve from 3.36264\n",

184
README.md Normal file → Executable file
View File

@@ -1,2 +1,182 @@
# Rentadrone_MachineLearning
Photovoltaic fault detector
# Rentadrone_MachineLearning Photovoltaic fault detector
## To do list:
- [x] Import model detection (SSD & YOLO3)
- [x] Model Panel Detection
- [ ] Model Soiling Fault Detection
- [ ] Model Diode Fault Detection
- [ ] Model Other Fault Detection
### Dependencies
* Python 3.x
* Numpy
* TensorFlow 1.x
* Keras 2.x
* OpenCV
* Beautiful Soup 4.x
## Detection
Grab the pretrained weights of SSD and YOLO3 from https://drive.google.com/drive/folders/1FuhIJFxuzB9CLuRNwbKWFFsM6Nyweorf?usp=sharing
## Training
### 1. Data preparation
View folder Train&Test_A/ and Train&Test_S/, example of panel anns and soiling fault anns.
Organize the dataset into 4 folders:
+ train_image_folder <= the folder that contains the train images.
+ train_annot_folder <= the folder that contains the train annotations in VOC format.
+ valid_image_folder <= the folder that contains the validation images.
+ valid_annot_folder <= the folder that contains the validation annotations in VOC format.
There is a one-to-one correspondence by file name between images and annotations.
For create own data set use LabelImg code from :
[https://github.com/tzutalin/labelImg](https://github.com/tzutalin/labelImg)
### 2. Edit the configuration file
The configuration file for YOLO3 is a json file, which looks like this (example soiling fault ):
```python
{
"model" : {
"min_input_size": 400,
"max_input_size": 400,
"anchors": [5,7, 10,14, 15, 15, 26,32, 45,119, 54,18, 94,59, 109,183, 200,21],
"labels": ["1"],
"backend": "full_yolo_backend.h5"
},
"train": {
"train_image_folder": "../Train&Test_S/Train/images/",
"train_annot_folder": "../Train&Test_S/Train/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_fault_1_gpu.pkl",
"train_times": 1,
"batch_size": 2,
"learning_rate": 1e-4,
"nb_epochs": 200,
"warmup_epochs": 15,
"ignore_thresh": 0.5,
"gpus": "0,1",
"grid_scales": [1,1,1],
"obj_scale": 5,
"noobj_scale": 1,
"xywh_scale": 1,
"class_scale": 1,
"tensorboard_dir": "log_experimento_fault_gpu",
"saved_weights_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5",
"debug": true
},
"valid": {
"valid_image_folder": "../Train&Test_S/Test/images/",
"valid_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/val_fault_1.pkl",
"valid_times": 1
},
"test": {
"test_image_folder": "../Train&Test_S/Test/images/",
"test_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/test_fault_1.pkl",
"test_times": 1
}
}
```
The configuration file for SSD300 is a json file, which looks like this (example soiling fault ):
```
{
"model" : {
"backend": "ssd300",
"input": 400,
"labels": ["1"]
},
"train": {
"train_image_folder": "Train&Test_S/Train/images",
"train_annot_folder": "Train&Test_S/Train/anns",
"train_image_set_filename": "Train&Test_S/Train/train.txt",
"train_times": 1,
"batch_size": 12,
"learning_rate": 1e-4,
"warmup_epochs": 3,
"saved_weights_name": "Result_ssd300_fault_1/experimento_ssd300_fault_1.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_S/Test/images",
"test_annot_folder": "Train&Test_S/Test/anns",
"test_image_set_filename": "Train&Test_S/Test/test.txt"
}
}
```
### 3. Start the training process
`python train_ssd.py -c config.json -o /path/to/result`
or
`python train_ssd.py -c config.json -o /path/to/result`
By the end of this process, the code will write the weights of the best model to file best_weights.h5 (or whatever name specified in the setting "saved_weights_name" in the config.json file). The training process stops when the loss on the validation set is not improved in 20 consecutive epoches.
### 4. Perform detection using trained weights on image, set of images
`python predict_ssd.py -c config.json -i /path/to/image/or/video -o /path/output/result`
or
`python predict_yolo.py -c config.json -i /path/to/image/or/video -o /path/output/result`
It carries out detection on the image and write the image with detected bounding boxes to the same folder.
## Evaluation
The evaluation is integrated into the training process, if you want to do the independent evaluation you must go to the folder ssd_keras-master or keras-yolo3-master and use the following code
`python evaluate.py -c config.json`
Compute the mAP performance of the model defined in `saved_weights_name` on the validation dataset defined in `valid_image_folder` and `valid_annot_folder`.
# Result
All of weights of this trained model grab from https://drive.google.com/drive/folders/1FuhIJFxuzB9CLuRNwbKWFFsM6Nyweorf?usp=sharing
## Panel Detector
### SDD7
On folder Result_ssd7_panel show code (jupyter notebook), weight and result of this model (mAP 89.8%).
.. image:: /Result_ssd_panel/result_ssd7_panel/DJI_0020.jpg
:width: 200px
:align: center
/Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg
:width: 200px
:align: center
## Soiling Fault Detector
### SSD300
On folder Result_ssd300_fault_1 show code (jupyter notebook), weight and result of this model (mAP 79.5%).
/Result_ssd300_fault_1/result_ssd300_fault_1/Mision 11_DJI_0011.jpg
:width: 200px
:align: center
### YOLO3
On folder Result_ssd300_fault_1 show history train (yolo3_full_yolo.output), weight and result of this model (mAP 73.02%).
/Result_yolo3_fault_1/result_yolo3_fault_1/Mision 11_DJI_0011.jpg
:width: 200px
:align: center
## Diode Fault Detector

View File

@@ -236,7 +236,7 @@
"import xml.etree.cElementTree as ET\n",
"\n",
"import sys\n",
"sys.path += [os.path.abspath('../../ssd_keras-master')]\n",
"sys.path += [os.path.abspath('../ssd_keras-master')]\n",
"\n",
"from keras_loss_function.keras_ssd_loss import SSDLoss\n",
"from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes\n",

View File

@@ -236,7 +236,7 @@
"import xml.etree.cElementTree as ET\n",
"\n",
"import sys\n",
"sys.path += [os.path.abspath('../../ssd_keras-master')]\n",
"sys.path += [os.path.abspath('../ssd_keras-master')]\n",
"\n",
"from keras_loss_function.keras_ssd_loss import SSDLoss\n",
"from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes\n",

View File

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

Before

Width:  |  Height:  |  Size: 130 KiB

After

Width:  |  Height:  |  Size: 130 KiB

View File

Before

Width:  |  Height:  |  Size: 192 KiB

After

Width:  |  Height:  |  Size: 192 KiB

View File

Before

Width:  |  Height:  |  Size: 196 KiB

After

Width:  |  Height:  |  Size: 196 KiB

View File

Before

Width:  |  Height:  |  Size: 189 KiB

After

Width:  |  Height:  |  Size: 189 KiB

View File

Before

Width:  |  Height:  |  Size: 149 KiB

After

Width:  |  Height:  |  Size: 149 KiB

View File

Before

Width:  |  Height:  |  Size: 165 KiB

After

Width:  |  Height:  |  Size: 165 KiB

View File

Before

Width:  |  Height:  |  Size: 152 KiB

After

Width:  |  Height:  |  Size: 152 KiB

View File

Before

Width:  |  Height:  |  Size: 184 KiB

After

Width:  |  Height:  |  Size: 184 KiB

View File

Before

Width:  |  Height:  |  Size: 181 KiB

After

Width:  |  Height:  |  Size: 181 KiB

View File

Before

Width:  |  Height:  |  Size: 179 KiB

After

Width:  |  Height:  |  Size: 179 KiB

View File

Before

Width:  |  Height:  |  Size: 110 KiB

After

Width:  |  Height:  |  Size: 110 KiB

View File

Before

Width:  |  Height:  |  Size: 109 KiB

After

Width:  |  Height:  |  Size: 109 KiB

View File

Before

Width:  |  Height:  |  Size: 139 KiB

After

Width:  |  Height:  |  Size: 139 KiB

View File

Before

Width:  |  Height:  |  Size: 154 KiB

After

Width:  |  Height:  |  Size: 154 KiB

View File

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 148 KiB

View File

Before

Width:  |  Height:  |  Size: 156 KiB

After

Width:  |  Height:  |  Size: 156 KiB

View File

Before

Width:  |  Height:  |  Size: 114 KiB

After

Width:  |  Height:  |  Size: 114 KiB

View File

Before

Width:  |  Height:  |  Size: 108 KiB

After

Width:  |  Height:  |  Size: 108 KiB

View File

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 205 KiB

View File

Before

Width:  |  Height:  |  Size: 162 KiB

After

Width:  |  Height:  |  Size: 162 KiB

View File

Before

Width:  |  Height:  |  Size: 162 KiB

After

Width:  |  Height:  |  Size: 162 KiB

View File

Before

Width:  |  Height:  |  Size: 171 KiB

After

Width:  |  Height:  |  Size: 171 KiB

View File

Before

Width:  |  Height:  |  Size: 127 KiB

After

Width:  |  Height:  |  Size: 127 KiB

View File

Before

Width:  |  Height:  |  Size: 172 KiB

After

Width:  |  Height:  |  Size: 172 KiB

View File

@@ -124,7 +124,7 @@
"import xml.etree.cElementTree as ET\n",
"\n",
"import sys\n",
"sys.path += [os.path.abspath('../../ssd_keras-master')]\n",
"sys.path += [os.path.abspath('../ssd_keras-master')]\n",
"\n",
"from keras_loss_function.keras_ssd_loss import SSDLoss\n",
"from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes\n",

File diff suppressed because one or more lines are too long

View File

@@ -6,9 +6,9 @@
},
"train": {
"train_image_folder": "Train&Test_A/images",
"train_annot_folder": "Train&Test_A/anns",
"train_image_set_filename": "Train&Test_A/train.txt",
"train_image_folder": "../Train&Test_A/Train/images",
"train_annot_folder": "../Train&Test_A/Train/anns",
"train_image_set_filename": "../Train&Test_A/Train/train.txt",
"train_times": 1,
"batch_size": 8,
@@ -21,8 +21,8 @@
"test": {
"test_image_folder": "Train&Test_A/images",
"test_annot_folder": "Train&Test_A/anns",
"test_image_set_filename": "Train&Test_A/test.txt"
"test_image_folder": "../Train&Test_A/Test/images",
"test_annot_folder": "../Train&Test_A/Test/anns",
"test_image_set_filename": "../Train&Test_A/Test/test.txt"
}
}

View File

Before

Width:  |  Height:  |  Size: 252 KiB

After

Width:  |  Height:  |  Size: 252 KiB

View File

Before

Width:  |  Height:  |  Size: 257 KiB

After

Width:  |  Height:  |  Size: 257 KiB

View File

Before

Width:  |  Height:  |  Size: 221 KiB

After

Width:  |  Height:  |  Size: 221 KiB

View File

Before

Width:  |  Height:  |  Size: 259 KiB

After

Width:  |  Height:  |  Size: 259 KiB

View File

Before

Width:  |  Height:  |  Size: 303 KiB

After

Width:  |  Height:  |  Size: 303 KiB

View File

Before

Width:  |  Height:  |  Size: 209 KiB

After

Width:  |  Height:  |  Size: 209 KiB

View File

Before

Width:  |  Height:  |  Size: 217 KiB

After

Width:  |  Height:  |  Size: 217 KiB

View File

Before

Width:  |  Height:  |  Size: 137 KiB

After

Width:  |  Height:  |  Size: 137 KiB

View File

Before

Width:  |  Height:  |  Size: 227 KiB

After

Width:  |  Height:  |  Size: 227 KiB

View File

Before

Width:  |  Height:  |  Size: 316 KiB

After

Width:  |  Height:  |  Size: 316 KiB

View File

@@ -0,0 +1,49 @@
{
"model" : {
"min_input_size": 400,
"max_input_size": 400,
"anchors": [5,7, 10,14, 15, 15, 26,32, 45,119, 54,18, 94,59, 109,183, 200,21],
"labels": ["1"],
"backend": "full_yolo_backend.h5"
},
"train": {
"train_image_folder": "../Train&Test_S/Train/images/",
"train_annot_folder": "../Train&Test_S/Train/anns/",
"cache_name": "../Result_yolo3_fault_1/experimento_fault_1_gpu.pkl",
"train_times": 1,
"batch_size": 2,
"learning_rate": 1e-4,
"nb_epochs": 200,
"warmup_epochs": 15,
"ignore_thresh": 0.5,
"gpus": "0,1",
"grid_scales": [1,1,1],
"obj_scale": 5,
"noobj_scale": 1,
"xywh_scale": 1,
"class_scale": 1,
"tensorboard_dir": "log_experimento_fault_gpu",
"saved_weights_name": "Result_yolo3_fault_1/experimento_yolo3_full_fault.h5",
"debug": true
},
"valid": {
"valid_image_folder": "../Train&Test_S/Test/images/",
"valid_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Result_yolo3_fault_1/val_fault_1.pkl",
"valid_times": 1
},
"test": {
"test_image_folder": "../Train&Test_S/Test/images/",
"test_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Result_yolo3_fault_1/test_fault_1.pkl",
"test_times": 1
}
}

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

View File

@@ -0,0 +1 @@
Tiempo promedio:0.16086657524108885

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,7 @@
Using TensorFlow backend.
Traceback (most recent call last):
File "train.py", line 294, in <module>
_main_(args)
File "train.py", line 170, in _main_
with open(config_path) as config_buffer:
FileNotFoundError: [Errno 2] No such file or directory: 'config_full_yolo_panel.json'

View File

@@ -0,0 +1,765 @@
Seen labels: {'1': 444}
Given labels: ['1']
Training on: ['1']
multi_gpu:2
Epoch 1/515
- 30s - loss: 841.8860 - yolo_layer_1_loss: 77.8076 - yolo_layer_2_loss: 186.9955 - yolo_layer_3_loss: 577.0829
Epoch 00001: loss improved from inf to 841.88598, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 2/515
- 8s - loss: 614.3234 - yolo_layer_1_loss: 51.5602 - yolo_layer_2_loss: 119.3063 - yolo_layer_3_loss: 443.4569
Epoch 00002: loss improved from 841.88598 to 614.32342, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 3/515
- 8s - loss: 425.1414 - yolo_layer_1_loss: 33.0108 - yolo_layer_2_loss: 69.7902 - yolo_layer_3_loss: 322.3403
Epoch 00003: loss improved from 614.32342 to 425.14141, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 4/515
- 8s - loss: 297.2260 - yolo_layer_1_loss: 21.2205 - yolo_layer_2_loss: 42.5927 - yolo_layer_3_loss: 233.4129
Epoch 00004: loss improved from 425.14141 to 297.22604, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 5/515
- 8s - loss: 214.4323 - yolo_layer_1_loss: 15.8632 - yolo_layer_2_loss: 31.6268 - yolo_layer_3_loss: 166.9423
Epoch 00005: loss improved from 297.22604 to 214.43233, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 6/515
- 8s - loss: 151.8697 - yolo_layer_1_loss: 12.1887 - yolo_layer_2_loss: 24.8525 - yolo_layer_3_loss: 114.8284
Epoch 00006: loss improved from 214.43233 to 151.86965, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 7/515
- 8s - loss: 112.5749 - yolo_layer_1_loss: 10.3207 - yolo_layer_2_loss: 20.0942 - yolo_layer_3_loss: 82.1601
Epoch 00007: loss improved from 151.86965 to 112.57493, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 8/515
- 8s - loss: 91.5417 - yolo_layer_1_loss: 9.1444 - yolo_layer_2_loss: 16.7732 - yolo_layer_3_loss: 65.6241
Epoch 00008: loss improved from 112.57493 to 91.54170, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 9/515
- 8s - loss: 78.4018 - yolo_layer_1_loss: 7.9203 - yolo_layer_2_loss: 14.6749 - yolo_layer_3_loss: 55.8066
Epoch 00009: loss improved from 91.54170 to 78.40179, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 10/515
- 8s - loss: 68.6308 - yolo_layer_1_loss: 6.7468 - yolo_layer_2_loss: 12.9995 - yolo_layer_3_loss: 48.8844
Epoch 00010: loss improved from 78.40179 to 68.63080, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 11/515
- 8s - loss: 61.4348 - yolo_layer_1_loss: 6.7443 - yolo_layer_2_loss: 11.1806 - yolo_layer_3_loss: 43.5100
Epoch 00011: loss improved from 68.63080 to 61.43483, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 12/515
- 8s - loss: 56.7723 - yolo_layer_1_loss: 6.4445 - yolo_layer_2_loss: 10.3772 - yolo_layer_3_loss: 39.9506
Epoch 00012: loss improved from 61.43483 to 56.77228, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 13/515
- 8s - loss: 52.2985 - yolo_layer_1_loss: 6.1126 - yolo_layer_2_loss: 8.7641 - yolo_layer_3_loss: 37.4218
Epoch 00013: loss improved from 56.77228 to 52.29851, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 14/515
- 8s - loss: 47.9551 - yolo_layer_1_loss: 5.6831 - yolo_layer_2_loss: 8.1745 - yolo_layer_3_loss: 34.0975
Epoch 00014: loss improved from 52.29851 to 47.95507, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 15/515
- 8s - loss: 45.0555 - yolo_layer_1_loss: 5.3013 - yolo_layer_2_loss: 8.1108 - yolo_layer_3_loss: 31.6434
Epoch 00015: loss improved from 47.95507 to 45.05551, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 16/515
- 8s - loss: 28.6051 - yolo_layer_1_loss: 2.6394 - yolo_layer_2_loss: 2.5899 - yolo_layer_3_loss: 23.3758
Epoch 00016: loss improved from 45.05551 to 28.60513, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 17/515
- 8s - loss: 26.1275 - yolo_layer_1_loss: 2.4652 - yolo_layer_2_loss: 1.2359 - yolo_layer_3_loss: 22.4264
Epoch 00017: loss improved from 28.60513 to 26.12751, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 18/515
- 8s - loss: 24.7826 - yolo_layer_1_loss: 2.4551 - yolo_layer_2_loss: 1.0497 - yolo_layer_3_loss: 21.2778
Epoch 00018: loss improved from 26.12751 to 24.78260, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 19/515
- 8s - loss: 24.8584 - yolo_layer_1_loss: 2.4537 - yolo_layer_2_loss: 1.7691 - yolo_layer_3_loss: 20.6356
Epoch 00019: loss did not improve from 24.78260
Epoch 20/515
- 8s - loss: 24.8111 - yolo_layer_1_loss: 2.4533 - yolo_layer_2_loss: 1.9219 - yolo_layer_3_loss: 20.4360
Epoch 00020: loss did not improve from 24.78260
Epoch 21/515
- 8s - loss: 22.5772 - yolo_layer_1_loss: 2.4530 - yolo_layer_2_loss: 0.3950 - yolo_layer_3_loss: 19.7291
Epoch 00021: loss improved from 24.78260 to 22.57717, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 22/515
- 8s - loss: 21.6106 - yolo_layer_1_loss: 2.4529 - yolo_layer_2_loss: 0.3884 - yolo_layer_3_loss: 18.7693
Epoch 00022: loss improved from 22.57717 to 21.61061, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 23/515
- 8s - loss: 22.7964 - yolo_layer_1_loss: 2.4526 - yolo_layer_2_loss: 1.7511 - yolo_layer_3_loss: 18.5927
Epoch 00023: loss did not improve from 21.61061
Epoch 24/515
- 8s - loss: 21.4846 - yolo_layer_1_loss: 2.4527 - yolo_layer_2_loss: 0.9764 - yolo_layer_3_loss: 18.0554
Epoch 00024: loss improved from 21.61061 to 21.48458, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 25/515
- 8s - loss: 20.0254 - yolo_layer_1_loss: 2.4523 - yolo_layer_2_loss: 1.3867 - yolo_layer_3_loss: 16.1865
Epoch 00025: loss improved from 21.48458 to 20.02545, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 26/515
- 8s - loss: 20.1946 - yolo_layer_1_loss: 2.4521 - yolo_layer_2_loss: 0.8214 - yolo_layer_3_loss: 16.9210
Epoch 00026: loss did not improve from 20.02545
Epoch 27/515
- 8s - loss: 19.4652 - yolo_layer_1_loss: 2.4522 - yolo_layer_2_loss: 1.0831 - yolo_layer_3_loss: 15.9299
Epoch 00027: loss improved from 20.02545 to 19.46522, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 28/515
- 8s - loss: 18.5439 - yolo_layer_1_loss: 2.4520 - yolo_layer_2_loss: 0.7755 - yolo_layer_3_loss: 15.3164
Epoch 00028: loss improved from 19.46522 to 18.54391, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 29/515
- 8s - loss: 19.1413 - yolo_layer_1_loss: 2.4518 - yolo_layer_2_loss: 0.6481 - yolo_layer_3_loss: 16.0414
Epoch 00029: loss did not improve from 18.54391
Epoch 30/515
- 8s - loss: 18.8056 - yolo_layer_1_loss: 2.4517 - yolo_layer_2_loss: 0.6612 - yolo_layer_3_loss: 15.6927
Epoch 00030: loss did not improve from 18.54391
Epoch 31/515
- 8s - loss: 18.7235 - yolo_layer_1_loss: 2.4516 - yolo_layer_2_loss: 0.3523 - yolo_layer_3_loss: 15.9196
Epoch 00031: loss did not improve from 18.54391
Epoch 32/515
- 8s - loss: 18.1335 - yolo_layer_1_loss: 2.4516 - yolo_layer_2_loss: 0.3471 - yolo_layer_3_loss: 15.3348
Epoch 00032: loss improved from 18.54391 to 18.13353, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 33/515
- 8s - loss: 18.9755 - yolo_layer_1_loss: 2.4516 - yolo_layer_2_loss: 1.5007 - yolo_layer_3_loss: 15.0231
Epoch 00033: loss did not improve from 18.13353
Epoch 34/515
- 8s - loss: 17.7381 - yolo_layer_1_loss: 2.4515 - yolo_layer_2_loss: 0.7597 - yolo_layer_3_loss: 14.5269
Epoch 00034: loss improved from 18.13353 to 17.73806, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 35/515
- 8s - loss: 17.6988 - yolo_layer_1_loss: 2.4514 - yolo_layer_2_loss: 0.9286 - yolo_layer_3_loss: 14.3188
Epoch 00035: loss improved from 17.73806 to 17.69884, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 36/515
- 8s - loss: 18.6709 - yolo_layer_1_loss: 2.4515 - yolo_layer_2_loss: 2.3891 - yolo_layer_3_loss: 13.8303
Epoch 00036: loss did not improve from 17.69884
Epoch 37/515
- 8s - loss: 18.2760 - yolo_layer_1_loss: 2.4517 - yolo_layer_2_loss: 1.3570 - yolo_layer_3_loss: 14.4672
Epoch 00037: loss did not improve from 17.69884
Epoch 38/515
- 8s - loss: 17.3965 - yolo_layer_1_loss: 2.4516 - yolo_layer_2_loss: 0.6363 - yolo_layer_3_loss: 14.3086
Epoch 00038: loss improved from 17.69884 to 17.39655, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 39/515
- 8s - loss: 19.1710 - yolo_layer_1_loss: 2.4512 - yolo_layer_2_loss: 2.0798 - yolo_layer_3_loss: 14.6399
Epoch 00039: loss did not improve from 17.39655
Epoch 40/515
- 8s - loss: 16.7994 - yolo_layer_1_loss: 2.1742 - yolo_layer_2_loss: 1.4923 - yolo_layer_3_loss: 13.1329
Epoch 00040: loss improved from 17.39655 to 16.79938, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 41/515
- 8s - loss: 16.1321 - yolo_layer_1_loss: 2.0044 - yolo_layer_2_loss: 1.5375 - yolo_layer_3_loss: 12.5902
Epoch 00041: loss improved from 16.79938 to 16.13211, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 42/515
- 8s - loss: 15.2511 - yolo_layer_1_loss: 2.0032 - yolo_layer_2_loss: 0.3435 - yolo_layer_3_loss: 12.9044
Epoch 00042: loss improved from 16.13211 to 15.25109, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 43/515
- 8s - loss: 15.4615 - yolo_layer_1_loss: 1.4930 - yolo_layer_2_loss: 0.4556 - yolo_layer_3_loss: 13.5129
Epoch 00043: loss did not improve from 15.25109
Epoch 44/515
- 8s - loss: 15.3566 - yolo_layer_1_loss: 1.4243 - yolo_layer_2_loss: 0.6348 - yolo_layer_3_loss: 13.2975
Epoch 00044: loss did not improve from 15.25109
Epoch 45/515
- 8s - loss: 15.1810 - yolo_layer_1_loss: 1.4213 - yolo_layer_2_loss: 1.0727 - yolo_layer_3_loss: 12.6870
Epoch 00045: loss improved from 15.25109 to 15.18101, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 46/515
- 8s - loss: 14.8001 - yolo_layer_1_loss: 1.4207 - yolo_layer_2_loss: 0.6436 - yolo_layer_3_loss: 12.7358
Epoch 00046: loss improved from 15.18101 to 14.80009, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 47/515
- 8s - loss: 15.9913 - yolo_layer_1_loss: 1.4186 - yolo_layer_2_loss: 0.7564 - yolo_layer_3_loss: 13.8163
Epoch 00047: loss did not improve from 14.80009
Epoch 48/515
- 8s - loss: 15.3448 - yolo_layer_1_loss: 1.4177 - yolo_layer_2_loss: 0.3305 - yolo_layer_3_loss: 13.5966
Epoch 00048: loss did not improve from 14.80009
Epoch 49/515
- 8s - loss: 16.2205 - yolo_layer_1_loss: 1.4174 - yolo_layer_2_loss: 0.8522 - yolo_layer_3_loss: 13.9509
Epoch 00049: loss did not improve from 14.80009
Epoch 50/515
- 8s - loss: 15.2763 - yolo_layer_1_loss: 1.4172 - yolo_layer_2_loss: 0.7434 - yolo_layer_3_loss: 13.1158
Epoch 00050: loss did not improve from 14.80009
Epoch 51/515
- 8s - loss: 13.8052 - yolo_layer_1_loss: 1.4169 - yolo_layer_2_loss: 0.5506 - yolo_layer_3_loss: 11.8377
Epoch 00051: loss improved from 14.80009 to 13.80521, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 52/515
- 8s - loss: 14.8002 - yolo_layer_1_loss: 1.4164 - yolo_layer_2_loss: 0.9183 - yolo_layer_3_loss: 12.4655
Epoch 00052: loss did not improve from 13.80521
Epoch 53/515
- 8s - loss: 14.1243 - yolo_layer_1_loss: 1.4163 - yolo_layer_2_loss: 0.0273 - yolo_layer_3_loss: 12.6808
Epoch 00053: loss did not improve from 13.80521
Epoch 54/515
- 8s - loss: 15.0960 - yolo_layer_1_loss: 1.4176 - yolo_layer_2_loss: 1.1353 - yolo_layer_3_loss: 12.5430
Epoch 00054: loss did not improve from 13.80521
Epoch 55/515
- 8s - loss: 14.5331 - yolo_layer_1_loss: 1.4161 - yolo_layer_2_loss: 1.2318 - yolo_layer_3_loss: 11.8853
Epoch 00055: loss did not improve from 13.80521
Epoch 56/515
- 8s - loss: 12.8470 - yolo_layer_1_loss: 0.2412 - yolo_layer_2_loss: 0.4548 - yolo_layer_3_loss: 12.1510
Epoch 00056: loss improved from 13.80521 to 12.84697, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 57/515
- 8s - loss: 13.6198 - yolo_layer_1_loss: 0.0825 - yolo_layer_2_loss: 0.6259 - yolo_layer_3_loss: 12.9114
Epoch 00057: loss did not improve from 12.84697
Epoch 58/515
- 8s - loss: 13.4741 - yolo_layer_1_loss: 0.0426 - yolo_layer_2_loss: 0.7766 - yolo_layer_3_loss: 12.6549
Epoch 00058: loss did not improve from 12.84697
Epoch 59/515
- 8s - loss: 13.3988 - yolo_layer_1_loss: 0.0296 - yolo_layer_2_loss: 0.8546 - yolo_layer_3_loss: 12.5145
Epoch 00059: loss did not improve from 12.84697
Epoch 60/515
- 8s - loss: 14.2334 - yolo_layer_1_loss: 0.0238 - yolo_layer_2_loss: 2.2333 - yolo_layer_3_loss: 11.9763
Epoch 00060: loss did not improve from 12.84697
Epoch 61/515
- 8s - loss: 12.3875 - yolo_layer_1_loss: 0.0198 - yolo_layer_2_loss: 0.6220 - yolo_layer_3_loss: 11.7457
Epoch 00061: loss improved from 12.84697 to 12.38747, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 62/515
- 8s - loss: 13.0233 - yolo_layer_1_loss: 0.0166 - yolo_layer_2_loss: 1.5604 - yolo_layer_3_loss: 11.4462
Epoch 00062: loss did not improve from 12.38747
Epoch 63/515
- 8s - loss: 13.6101 - yolo_layer_1_loss: 0.0151 - yolo_layer_2_loss: 1.5615 - yolo_layer_3_loss: 12.0335
Epoch 00063: loss did not improve from 12.38747
Epoch 64/515
- 8s - loss: 12.9918 - yolo_layer_1_loss: 0.0157 - yolo_layer_2_loss: 0.9165 - yolo_layer_3_loss: 12.0596
Epoch 00064: loss did not improve from 12.38747
Epoch 65/515
- 8s - loss: 12.5881 - yolo_layer_1_loss: 0.0126 - yolo_layer_2_loss: 1.3505 - yolo_layer_3_loss: 11.2250
Epoch 00065: loss did not improve from 12.38747
Epoch 66/515
- 8s - loss: 13.5540 - yolo_layer_1_loss: 0.0122 - yolo_layer_2_loss: 1.3479 - yolo_layer_3_loss: 12.1940
Epoch 00066: loss did not improve from 12.38747
Epoch 67/515
- 8s - loss: 12.0130 - yolo_layer_1_loss: 0.0102 - yolo_layer_2_loss: 0.3236 - yolo_layer_3_loss: 11.6792
Epoch 00067: loss improved from 12.38747 to 12.01301, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 68/515
- 8s - loss: 13.0769 - yolo_layer_1_loss: 0.0087 - yolo_layer_2_loss: 1.2167 - yolo_layer_3_loss: 11.8515
Epoch 00068: loss did not improve from 12.01301
Epoch 69/515
- 8s - loss: 12.1441 - yolo_layer_1_loss: 0.0084 - yolo_layer_2_loss: 0.7509 - yolo_layer_3_loss: 11.3848
Epoch 00069: loss did not improve from 12.01301
Epoch 70/515
- 8s - loss: 13.9630 - yolo_layer_1_loss: 0.0083 - yolo_layer_2_loss: 1.5555 - yolo_layer_3_loss: 12.3992
Epoch 00070: loss did not improve from 12.01301
Epoch 71/515
- 8s - loss: 12.4808 - yolo_layer_1_loss: 0.0079 - yolo_layer_2_loss: 0.8397 - yolo_layer_3_loss: 11.6332
Epoch 00071: loss did not improve from 12.01301
Epoch 72/515
- 8s - loss: 12.6891 - yolo_layer_1_loss: 0.0081 - yolo_layer_2_loss: 1.0453 - yolo_layer_3_loss: 11.6357
Epoch 00072: loss did not improve from 12.01301
Epoch 73/515
- 8s - loss: 12.4497 - yolo_layer_1_loss: 0.0072 - yolo_layer_2_loss: 0.9164 - yolo_layer_3_loss: 11.5260
Epoch 00073: loss did not improve from 12.01301
Epoch 74/515
- 8s - loss: 11.9766 - yolo_layer_1_loss: 0.0061 - yolo_layer_2_loss: 0.0181 - yolo_layer_3_loss: 11.9523
Epoch 00074: loss improved from 12.01301 to 11.97656, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 75/515
- 8s - loss: 12.0609 - yolo_layer_1_loss: 0.0071 - yolo_layer_2_loss: 0.9390 - yolo_layer_3_loss: 11.1149
Epoch 00075: loss did not improve from 11.97656
Epoch 76/515
- 8s - loss: 11.2844 - yolo_layer_1_loss: 0.0071 - yolo_layer_2_loss: 0.5366 - yolo_layer_3_loss: 10.7406
Epoch 00076: loss improved from 11.97656 to 11.28435, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 77/515
- 8s - loss: 11.6225 - yolo_layer_1_loss: 0.0061 - yolo_layer_2_loss: 0.7412 - yolo_layer_3_loss: 10.8752
Epoch 00077: loss did not improve from 11.28435
Epoch 78/515
- 8s - loss: 11.4445 - yolo_layer_1_loss: 0.0067 - yolo_layer_2_loss: 0.6192 - yolo_layer_3_loss: 10.8185
Epoch 00078: loss did not improve from 11.28435
Epoch 79/515
- 8s - loss: 11.2077 - yolo_layer_1_loss: 0.0053 - yolo_layer_2_loss: 0.0161 - yolo_layer_3_loss: 11.1864
Epoch 00079: loss improved from 11.28435 to 11.20773, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 80/515
- 8s - loss: 12.4699 - yolo_layer_1_loss: 0.0052 - yolo_layer_2_loss: 0.9066 - yolo_layer_3_loss: 11.5581
Epoch 00080: loss did not improve from 11.20773
Epoch 81/515
- 8s - loss: 10.8540 - yolo_layer_1_loss: 0.0049 - yolo_layer_2_loss: 0.3155 - yolo_layer_3_loss: 10.5336
Epoch 00081: loss improved from 11.20773 to 10.85396, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 82/515
- 8s - loss: 11.0551 - yolo_layer_1_loss: 0.0054 - yolo_layer_2_loss: 1.4560 - yolo_layer_3_loss: 9.5938
Epoch 00082: loss did not improve from 10.85396
Epoch 83/515
- 8s - loss: 12.3864 - yolo_layer_1_loss: 0.0049 - yolo_layer_2_loss: 1.5137 - yolo_layer_3_loss: 10.8678
Epoch 00083: loss did not improve from 10.85396
Epoch 84/515
- 8s - loss: 11.0663 - yolo_layer_1_loss: 0.0048 - yolo_layer_2_loss: 1.0350 - yolo_layer_3_loss: 10.0265
Epoch 00084: loss did not improve from 10.85396
Epoch 85/515
- 8s - loss: 12.6912 - yolo_layer_1_loss: 0.0050 - yolo_layer_2_loss: 0.6226 - yolo_layer_3_loss: 12.0635
Epoch 00085: loss did not improve from 10.85396
Epoch 86/515
- 8s - loss: 11.1268 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 0.9546 - yolo_layer_3_loss: 10.1677
Epoch 00086: loss did not improve from 10.85396
Epoch 87/515
- 8s - loss: 10.6827 - yolo_layer_1_loss: 0.0047 - yolo_layer_2_loss: 0.6110 - yolo_layer_3_loss: 10.0670
Epoch 00087: loss improved from 10.85396 to 10.68270, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 88/515
- 8s - loss: 12.0615 - yolo_layer_1_loss: 0.0047 - yolo_layer_2_loss: 1.2050 - yolo_layer_3_loss: 10.8518
Epoch 00088: loss did not improve from 10.68270
Epoch 89/515
- 8s - loss: 13.6203 - yolo_layer_1_loss: 0.0054 - yolo_layer_2_loss: 2.3944 - yolo_layer_3_loss: 11.2205
Epoch 00089: loss did not improve from 10.68270
Epoch 90/515
- 8s - loss: 12.7777 - yolo_layer_1_loss: 0.0050 - yolo_layer_2_loss: 1.6387 - yolo_layer_3_loss: 11.1340
Epoch 00090: loss did not improve from 10.68270
Epoch 91/515
- 8s - loss: 10.3369 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 1.0321 - yolo_layer_3_loss: 9.3004
Epoch 00091: loss improved from 10.68270 to 10.33694, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 92/515
- 8s - loss: 10.9118 - yolo_layer_1_loss: 0.0051 - yolo_layer_2_loss: 0.4391 - yolo_layer_3_loss: 10.4677
Epoch 00092: loss did not improve from 10.33694
Epoch 93/515
- 8s - loss: 10.9945 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 0.8547 - yolo_layer_3_loss: 10.1354
Epoch 00093: loss did not improve from 10.33694
Epoch 94/515
- 8s - loss: 10.9409 - yolo_layer_1_loss: 0.0047 - yolo_layer_2_loss: 0.3274 - yolo_layer_3_loss: 10.6088
Epoch 00094: loss did not improve from 10.33694
Epoch 95/515
- 8s - loss: 11.5620 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 1.4315 - yolo_layer_3_loss: 10.1262
Epoch 00095: loss did not improve from 10.33694
Epoch 96/515
- 8s - loss: 12.1283 - yolo_layer_1_loss: 0.0061 - yolo_layer_2_loss: 0.7477 - yolo_layer_3_loss: 11.3746
Epoch 00096: loss did not improve from 10.33694
Epoch 97/515
- 8s - loss: 11.9138 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.9097 - yolo_layer_3_loss: 11.0002
Epoch 00097: loss did not improve from 10.33694
Epoch 98/515
- 8s - loss: 11.9964 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 1.4541 - yolo_layer_3_loss: 10.5386
Epoch 00098: loss did not improve from 10.33694
Epoch 99/515
- 8s - loss: 10.7158 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.6122 - yolo_layer_3_loss: 10.1007
Epoch 00099: loss did not improve from 10.33694
Epoch 100/515
- 8s - loss: 11.6595 - yolo_layer_1_loss: 0.0037 - yolo_layer_2_loss: 2.0484 - yolo_layer_3_loss: 9.6074
Epoch 00100: loss did not improve from 10.33694
Epoch 101/515
- 8s - loss: 10.9555 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.3110 - yolo_layer_3_loss: 10.6408
Epoch 00101: loss did not improve from 10.33694
Epoch 102/515
- 8s - loss: 11.3023 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.3076 - yolo_layer_3_loss: 10.9916
Epoch 00102: loss did not improve from 10.33694
Epoch 103/515
- 8s - loss: 9.4922 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.6086 - yolo_layer_3_loss: 8.8805
Epoch 00103: loss improved from 10.33694 to 9.49221, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 104/515
- 8s - loss: 11.8405 - yolo_layer_1_loss: 0.0028 - yolo_layer_2_loss: 1.5600 - yolo_layer_3_loss: 10.2778
Epoch 00104: loss did not improve from 9.49221
Epoch 105/515
- 8s - loss: 11.3724 - yolo_layer_1_loss: 0.0203 - yolo_layer_2_loss: 1.0299 - yolo_layer_3_loss: 10.3222
Epoch 00105: loss did not improve from 9.49221
Epoch 106/515
- 8s - loss: 9.6966 - yolo_layer_1_loss: 0.0042 - yolo_layer_2_loss: 0.9467 - yolo_layer_3_loss: 8.7457
Epoch 00106: loss did not improve from 9.49221
Epoch 107/515
- 8s - loss: 10.9607 - yolo_layer_1_loss: 0.0038 - yolo_layer_2_loss: 1.0244 - yolo_layer_3_loss: 9.9324
Epoch 00107: loss did not improve from 9.49221
Epoch 108/515
- 8s - loss: 12.1566 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 1.7391 - yolo_layer_3_loss: 10.4140
Epoch 00108: loss did not improve from 9.49221
Epoch 109/515
- 8s - loss: 11.6342 - yolo_layer_1_loss: 0.0041 - yolo_layer_2_loss: 1.2167 - yolo_layer_3_loss: 10.4134
Epoch 00109: loss did not improve from 9.49221
Epoch 110/515
- 8s - loss: 10.1108 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.7376 - yolo_layer_3_loss: 9.3694
Epoch 00110: loss did not improve from 9.49221
Epoch 111/515
- 8s - loss: 10.7036 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 1.3456 - yolo_layer_3_loss: 9.3540
Epoch 00111: loss did not improve from 9.49221
Epoch 112/515
- 8s - loss: 11.8961 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.7257 - yolo_layer_3_loss: 11.1675
Epoch 00112: loss did not improve from 9.49221
Epoch 113/515
- 8s - loss: 9.8033 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 0.8277 - yolo_layer_3_loss: 8.9717
Epoch 00113: loss did not improve from 9.49221
Epoch 114/515
- 8s - loss: 10.2972 - yolo_layer_1_loss: 0.0073 - yolo_layer_2_loss: 0.9140 - yolo_layer_3_loss: 9.3759
Epoch 00114: loss did not improve from 9.49221
Epoch 115/515
- 8s - loss: 10.0196 - yolo_layer_1_loss: 0.0057 - yolo_layer_2_loss: 1.3298 - yolo_layer_3_loss: 8.6840
Epoch 00115: loss did not improve from 9.49221
Epoch 116/515
- 8s - loss: 10.9724 - yolo_layer_1_loss: 0.0052 - yolo_layer_2_loss: 0.3139 - yolo_layer_3_loss: 10.6534
Epoch 00116: loss did not improve from 9.49221
Epoch 117/515
- 8s - loss: 10.3781 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 1.4506 - yolo_layer_3_loss: 8.9231
Epoch 00117: loss did not improve from 9.49221
Epoch 118/515
- 8s - loss: 11.4411 - yolo_layer_1_loss: 0.0041 - yolo_layer_2_loss: 1.9198 - yolo_layer_3_loss: 9.5172
Epoch 00118: loss did not improve from 9.49221
Epoch 00118: ReduceLROnPlateau reducing learning rate to 4.999999873689376e-05.
Epoch 119/515
- 8s - loss: 10.4207 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 0.9110 - yolo_layer_3_loss: 9.5054
Epoch 00119: loss did not improve from 9.49221
Epoch 120/515
- 8s - loss: 9.3581 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.3155 - yolo_layer_3_loss: 9.0392
Epoch 00120: loss improved from 9.49221 to 9.35814, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 121/515
- 8s - loss: 10.4556 - yolo_layer_1_loss: 0.0048 - yolo_layer_2_loss: 1.7540 - yolo_layer_3_loss: 8.6968
Epoch 00121: loss did not improve from 9.35814
Epoch 122/515
- 8s - loss: 10.0101 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 0.8284 - yolo_layer_3_loss: 9.1777
Epoch 00122: loss did not improve from 9.35814
Epoch 123/515
- 8s - loss: 10.5196 - yolo_layer_1_loss: 0.0035 - yolo_layer_2_loss: 1.4556 - yolo_layer_3_loss: 9.0605
Epoch 00123: loss did not improve from 9.35814
Epoch 124/515
- 8s - loss: 11.5030 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 1.5479 - yolo_layer_3_loss: 9.9525
Epoch 00124: loss did not improve from 9.35814
Epoch 125/515
- 8s - loss: 10.4945 - yolo_layer_1_loss: 0.0037 - yolo_layer_2_loss: 1.4400 - yolo_layer_3_loss: 9.0508
Epoch 00125: loss did not improve from 9.35814
Epoch 126/515
- 8s - loss: 8.3827 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 0.3100 - yolo_layer_3_loss: 8.0695
Epoch 00126: loss improved from 9.35814 to 8.38269, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 127/515
- 8s - loss: 9.1943 - yolo_layer_1_loss: 0.0045 - yolo_layer_2_loss: 1.2338 - yolo_layer_3_loss: 7.9560
Epoch 00127: loss did not improve from 8.38269
Epoch 128/515
- 8s - loss: 9.1160 - yolo_layer_1_loss: 0.0041 - yolo_layer_2_loss: 1.0230 - yolo_layer_3_loss: 8.0890
Epoch 00128: loss did not improve from 8.38269
Epoch 129/515
- 8s - loss: 10.1249 - yolo_layer_1_loss: 0.0050 - yolo_layer_2_loss: 0.7293 - yolo_layer_3_loss: 9.3906
Epoch 00129: loss did not improve from 8.38269
Epoch 130/515
- 8s - loss: 9.4097 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 0.9468 - yolo_layer_3_loss: 8.4584
Epoch 00130: loss did not improve from 8.38269
Epoch 131/515
- 8s - loss: 8.7635 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.3068 - yolo_layer_3_loss: 8.4533
Epoch 00131: loss did not improve from 8.38269
Epoch 132/515
- 8s - loss: 9.7159 - yolo_layer_1_loss: 0.0033 - yolo_layer_2_loss: 1.0321 - yolo_layer_3_loss: 8.6804
Epoch 00132: loss did not improve from 8.38269
Epoch 133/515
- 8s - loss: 9.5406 - yolo_layer_1_loss: 0.0028 - yolo_layer_2_loss: 1.0238 - yolo_layer_3_loss: 8.5140
Epoch 00133: loss did not improve from 8.38269
Epoch 134/515
- 8s - loss: 8.8344 - yolo_layer_1_loss: 0.0030 - yolo_layer_2_loss: 0.4292 - yolo_layer_3_loss: 8.4023
Epoch 00134: loss did not improve from 8.38269
Epoch 135/515
- 8s - loss: 10.3866 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 1.0259 - yolo_layer_3_loss: 9.3575
Epoch 00135: loss did not improve from 8.38269
Epoch 136/515
- 8s - loss: 8.8304 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 0.9707 - yolo_layer_3_loss: 7.8566
Epoch 00136: loss did not improve from 8.38269
Epoch 137/515
- 8s - loss: 10.1222 - yolo_layer_1_loss: 0.0039 - yolo_layer_2_loss: 1.3185 - yolo_layer_3_loss: 8.7999
Epoch 00137: loss did not improve from 8.38269
Epoch 138/515
- 8s - loss: 9.3527 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.3070 - yolo_layer_3_loss: 9.0423
Epoch 00138: loss did not improve from 8.38269
Epoch 139/515
- 8s - loss: 9.5651 - yolo_layer_1_loss: 0.0043 - yolo_layer_2_loss: 1.2010 - yolo_layer_3_loss: 8.3599
Epoch 00139: loss did not improve from 8.38269
Epoch 140/515
- 8s - loss: 9.1113 - yolo_layer_1_loss: 0.0044 - yolo_layer_2_loss: 0.3093 - yolo_layer_3_loss: 8.7976
Epoch 00140: loss did not improve from 8.38269
Epoch 141/515
- 8s - loss: 10.0895 - yolo_layer_1_loss: 0.0040 - yolo_layer_2_loss: 1.5635 - yolo_layer_3_loss: 8.5220
Epoch 00141: loss did not improve from 8.38269
Epoch 00141: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
Epoch 142/515
- 8s - loss: 8.5878 - yolo_layer_1_loss: 0.0030 - yolo_layer_2_loss: 0.7211 - yolo_layer_3_loss: 7.8636
Epoch 00142: loss did not improve from 8.38269
Epoch 143/515
- 8s - loss: 8.2646 - yolo_layer_1_loss: 0.0034 - yolo_layer_2_loss: 0.0089 - yolo_layer_3_loss: 8.2523
Epoch 00143: loss improved from 8.38269 to 8.26462, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 144/515
- 8s - loss: 9.8152 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 0.8298 - yolo_layer_3_loss: 8.9822
Epoch 00144: loss did not improve from 8.26462
Epoch 145/515
- 8s - loss: 10.5636 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 0.9493 - yolo_layer_3_loss: 9.6118
Epoch 00145: loss did not improve from 8.26462
Epoch 146/515
- 8s - loss: 9.5045 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.7293 - yolo_layer_3_loss: 8.7715
Epoch 00146: loss did not improve from 8.26462
Epoch 147/515
- 8s - loss: 11.2188 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 2.0638 - yolo_layer_3_loss: 9.1514
Epoch 00147: loss did not improve from 8.26462
Epoch 148/515
- 8s - loss: 9.5750 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 0.4362 - yolo_layer_3_loss: 9.1362
Epoch 00148: loss did not improve from 8.26462
Epoch 149/515
- 8s - loss: 10.1477 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 0.7351 - yolo_layer_3_loss: 9.4090
Epoch 00149: loss did not improve from 8.26462
Epoch 150/515
- 8s - loss: 9.1419 - yolo_layer_1_loss: 0.0033 - yolo_layer_2_loss: 0.4289 - yolo_layer_3_loss: 8.7097
Epoch 00150: loss did not improve from 8.26462
Epoch 151/515
- 8s - loss: 9.4027 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 0.7207 - yolo_layer_3_loss: 8.6793
Epoch 00151: loss did not improve from 8.26462
Epoch 152/515
- 8s - loss: 8.4358 - yolo_layer_1_loss: 0.0028 - yolo_layer_2_loss: 0.0078 - yolo_layer_3_loss: 8.4252
Epoch 00152: loss did not improve from 8.26462
Epoch 153/515
- 8s - loss: 9.5755 - yolo_layer_1_loss: 0.0031 - yolo_layer_2_loss: 1.0268 - yolo_layer_3_loss: 8.5456
Epoch 00153: loss did not improve from 8.26462
Epoch 154/515
- 8s - loss: 9.1095 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 1.0259 - yolo_layer_3_loss: 8.0807
Epoch 00154: loss did not improve from 8.26462
Epoch 155/515
- 8s - loss: 10.7460 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 1.7195 - yolo_layer_3_loss: 9.0236
Epoch 00155: loss did not improve from 8.26462
Epoch 156/515
- 8s - loss: 7.7498 - yolo_layer_1_loss: 0.0025 - yolo_layer_2_loss: 0.3063 - yolo_layer_3_loss: 7.4410
Epoch 00156: loss improved from 8.26462 to 7.74976, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 157/515
- 8s - loss: 10.5007 - yolo_layer_1_loss: 0.0026 - yolo_layer_2_loss: 2.4630 - yolo_layer_3_loss: 8.0351
Epoch 00157: loss did not improve from 7.74976
Epoch 158/515
- 8s - loss: 8.3978 - yolo_layer_1_loss: 0.0023 - yolo_layer_2_loss: 0.0079 - yolo_layer_3_loss: 8.3876
Epoch 00158: loss did not improve from 7.74976
Epoch 159/515
- 8s - loss: 10.3594 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.6062 - yolo_layer_3_loss: 9.7504
Epoch 00159: loss did not improve from 7.74976
Epoch 160/515
- 8s - loss: 8.0631 - yolo_layer_1_loss: 0.0029 - yolo_layer_2_loss: 0.0083 - yolo_layer_3_loss: 8.0519
Epoch 00160: loss did not improve from 7.74976
Epoch 161/515
- 8s - loss: 10.1636 - yolo_layer_1_loss: 0.0036 - yolo_layer_2_loss: 1.1260 - yolo_layer_3_loss: 9.0340
Epoch 00161: loss did not improve from 7.74976
Epoch 162/515
- 8s - loss: 7.7263 - yolo_layer_1_loss: 0.0030 - yolo_layer_2_loss: 0.3081 - yolo_layer_3_loss: 7.4152
Epoch 00162: loss improved from 7.74976 to 7.72629, saving model to ../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5
Epoch 163/515
- 8s - loss: 8.1252 - yolo_layer_1_loss: 0.0033 - yolo_layer_2_loss: 0.6006 - yolo_layer_3_loss: 7.5213
Epoch 00163: loss did not improve from 7.72629
Epoch 164/515
- 8s - loss: 11.0429 - yolo_layer_1_loss: 0.0032 - yolo_layer_2_loss: 1.3374 - yolo_layer_3_loss: 9.7023
Epoch 00164: loss did not improve from 7.72629
Epoch 165/515
- 8s - loss: 9.2890 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 0.0078 - yolo_layer_3_loss: 9.2785
Epoch 00165: loss did not improve from 7.72629
Epoch 166/515
- 8s - loss: 8.4417 - yolo_layer_1_loss: 0.0023 - yolo_layer_2_loss: 0.3046 - yolo_layer_3_loss: 8.1348
Epoch 00166: loss did not improve from 7.72629
Epoch 167/515
- 8s - loss: 8.3270 - yolo_layer_1_loss: 0.0023 - yolo_layer_2_loss: 0.3062 - yolo_layer_3_loss: 8.0186
Epoch 00167: loss did not improve from 7.72629
Epoch 168/515
- 8s - loss: 10.6449 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 1.9203 - yolo_layer_3_loss: 8.7223
Epoch 00168: loss did not improve from 7.72629
Epoch 169/515
- 8s - loss: 10.5839 - yolo_layer_1_loss: 0.0018 - yolo_layer_2_loss: 2.7693 - yolo_layer_3_loss: 7.8127
Epoch 00169: loss did not improve from 7.72629
Epoch 170/515
- 8s - loss: 8.5488 - yolo_layer_1_loss: 0.0021 - yolo_layer_2_loss: 1.0267 - yolo_layer_3_loss: 7.5200
Epoch 00170: loss did not improve from 7.72629
Epoch 171/515
- 8s - loss: 9.1482 - yolo_layer_1_loss: 0.0021 - yolo_layer_2_loss: 1.2767 - yolo_layer_3_loss: 7.8694
Epoch 00171: loss did not improve from 7.72629
Epoch 172/515
- 8s - loss: 8.3121 - yolo_layer_1_loss: 0.0019 - yolo_layer_2_loss: 0.8212 - yolo_layer_3_loss: 7.4891
Epoch 00172: loss did not improve from 7.72629
Epoch 173/515
- 8s - loss: 8.3980 - yolo_layer_1_loss: 0.0021 - yolo_layer_2_loss: 0.0069 - yolo_layer_3_loss: 8.3891
Epoch 00173: loss did not improve from 7.72629
Epoch 174/515
- 8s - loss: 8.7948 - yolo_layer_1_loss: 0.0024 - yolo_layer_2_loss: 0.6750 - yolo_layer_3_loss: 8.1174
Epoch 00174: loss did not improve from 7.72629
Epoch 175/515
- 8s - loss: 8.8121 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 0.5984 - yolo_layer_3_loss: 8.2111
Epoch 00175: loss did not improve from 7.72629
Epoch 176/515
- 8s - loss: 9.4026 - yolo_layer_1_loss: 0.0028 - yolo_layer_2_loss: 0.9408 - yolo_layer_3_loss: 8.4590
Epoch 00176: loss did not improve from 7.72629
Epoch 177/515
- 8s - loss: 9.5214 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 1.8774 - yolo_layer_3_loss: 7.6414
Epoch 00177: loss did not improve from 7.72629
Epoch 00177: ReduceLROnPlateau reducing learning rate to 1.249999968422344e-05.
Epoch 178/515
- 8s - loss: 10.3820 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 2.0903 - yolo_layer_3_loss: 8.2891
Epoch 00178: loss did not improve from 7.72629
Epoch 179/515
- 8s - loss: 9.1530 - yolo_layer_1_loss: 0.0027 - yolo_layer_2_loss: 1.1965 - yolo_layer_3_loss: 7.9539
Epoch 00179: loss did not improve from 7.72629
Epoch 180/515
- 8s - loss: 9.2665 - yolo_layer_1_loss: 0.0025 - yolo_layer_2_loss: 1.0225 - yolo_layer_3_loss: 8.2415
Epoch 00180: loss did not improve from 7.72629
Epoch 181/515
- 8s - loss: 9.2609 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 0.7257 - yolo_layer_3_loss: 8.5330
Epoch 00181: loss did not improve from 7.72629
Epoch 182/515
- 8s - loss: 9.4916 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 0.0069 - yolo_layer_3_loss: 9.4825
Epoch 00182: loss did not improve from 7.72629
Epoch 183/515
- 8s - loss: 8.2299 - yolo_layer_1_loss: 0.0028 - yolo_layer_2_loss: 0.4268 - yolo_layer_3_loss: 7.8003
Epoch 00183: loss did not improve from 7.72629
Epoch 184/515
- 8s - loss: 9.1071 - yolo_layer_1_loss: 0.0023 - yolo_layer_2_loss: 0.3038 - yolo_layer_3_loss: 8.8009
Epoch 00184: loss did not improve from 7.72629
Epoch 185/515
- 8s - loss: 8.4958 - yolo_layer_1_loss: 0.0017 - yolo_layer_2_loss: 0.7951 - yolo_layer_3_loss: 7.6990
Epoch 00185: loss did not improve from 7.72629
Epoch 186/515
- 8s - loss: 9.3554 - yolo_layer_1_loss: 0.0025 - yolo_layer_2_loss: 2.0338 - yolo_layer_3_loss: 7.3190
Epoch 00186: loss did not improve from 7.72629
Epoch 187/515
- 8s - loss: 8.3214 - yolo_layer_1_loss: 0.0022 - yolo_layer_2_loss: 1.4950 - yolo_layer_3_loss: 6.8242
Epoch 00187: loss did not improve from 7.72629
Epoch 00187: early stopping
39 instances of class 1 with average precision: 0.7302
mAP using the weighted average of precisions among classes: 0.7302
mAP: 0.7302

View File

@@ -0,0 +1,22 @@
Using TensorFlow backend.
WARNING:tensorflow:From /home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2020-02-06 13:04:21.745167: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2020-02-06 13:04:21.769299: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3199880000 Hz
2020-02-06 13:04:21.769997: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x556261b45820 executing computations on platform Host. Devices:
2020-02-06 13:04:21.770040: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2020-02-06 13:04:21.864852: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-06 13:04:21.865732: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x55626138ae90 executing computations on platform CUDA. Devices:
2020-02-06 13:04:21.865771: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1060 6GB, Compute Capability 6.1
2020-02-06 13:04:21.866250: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7845
pciBusID: 0000:22:00.0
totalMemory: 5.93GiB freeMemory: 5.49GiB
2020-02-06 13:04:21.866280: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2020-02-06 13:04:21.867559: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-02-06 13:04:21.867583: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2020-02-06 13:04:21.867595: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2020-02-06 13:04:21.867879: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5324 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:22:00.0, compute capability: 6.1)
/home/dl-desktop/anaconda3/envs/tf_gpu/lib/python3.6/site-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.
warnings.warn('No training configuration found in save file: '

View File

@@ -0,0 +1,4 @@
dict_items([(0, (0.730221799316822, 39.0))])
39 instances of class 1 with average precision: 0.7302
mAP using the weighted average of precisions among classes: 0.7302
mAP: 0.7302

View File

@@ -6,23 +6,22 @@
},
"train": {
"train_image_folder": "Train&Test_S/images",
"train_annot_folder": "Train&Test_S/anns",
"train_image_set_filename": "Train&Test_S/train.txt",
"train_image_folder": "Train&Test_S/Train/images",
"train_annot_folder": "Train&Test_S/Train/anns",
"train_image_set_filename": "Train&Test_S/Train/train.txt",
"train_times": 1,
"batch_size": 12,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd300_fault_1.h5",
"saved_weights_name": "Result_ssd300_fault_1/experimento_ssd300_fault_1.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_S/images",
"test_annot_folder": "Train&Test_S/anns",
"test_image_set_filename": "Train&Test_S/test.txt"
"test_image_folder": "Train&Test_S/Test/images",
"test_annot_folder": "Train&Test_S/Test/anns",
"test_image_set_filename": "Train&Test_S/Test/test.txt"
}
}

View File

@@ -1,28 +0,0 @@
{
"model" : {
"backend": "ssd7",
"input": 400,
"labels": ["1","2","3","4","5","6","7","8"]
},
"train": {
"train_image_folder": "Train&Test_B/images",
"train_annot_folder": "Train&Test_B/anns",
"train_image_set_filename": "Train&Test_B/train.txt",
"train_times": 1,
"batch_size": 8,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd7_fault.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_B/images",
"test_annot_folder": "Train&Test_B/anns",
"test_image_set_filename": "Train&Test_B/test.txt"
}
}

View File

@@ -1,28 +0,0 @@
{
"model" : {
"backend": "ssd7",
"input": 400,
"labels": ["1"]
},
"train": {
"train_image_folder": "Train&Test_S/Train/images",
"train_annot_folder": "Train&Test_S/Train/anns",
"train_image_set_filename": "Train&Test_S/Train/train.txt",
"train_times": 1,
"batch_size": 8,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd7_fault_1.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_S/Test/images",
"test_annot_folder": "Train&Test_S/Test/anns",
"test_image_set_filename": "Train&Test_S/Test/test.txt"
}
}

View File

@@ -1,28 +0,0 @@
{
"model" : {
"backend": "ssd7",
"input": 400,
"labels": ["panel"]
},
"train": {
"train_image_folder": "Train&Test_A/images",
"train_annot_folder": "Train&Test_A/anns",
"train_image_set_filename": "Train&Test_A/train.txt",
"train_times": 1,
"batch_size": 8,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd7_panel.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_A/images",
"test_annot_folder": "Train&Test_A/anns",
"test_image_set_filename": "Train&Test_A/test.txt"
}
}

View File

@@ -1,28 +0,0 @@
{
"model" : {
"backend": "ssd7",
"input": 400,
"labels": ["panel"]
},
"train": {
"train_image_folder": "Train&Test_A/images",
"train_annot_folder": "Train&Test_A/anns",
"train_image_set_filename": "Train&Test_A/train.txt",
"train_times": 1,
"batch_size": 8,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd7_panel_2.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_A/images",
"test_annot_folder": "Train&Test_A/anns",
"test_image_set_filename": "Train&Test_A/test.txt"
}
}

View File

@@ -1,28 +0,0 @@
{
"model" : {
"backend": "ssd7",
"input": 400,
"labels": ["panel", "cell"]
},
"train": {
"train_image_folder": "Train&Test_A/images",
"train_annot_folder": "Train&Test_A/anns_cell",
"train_image_set_filename": "Train&Test_A/train.txt",
"train_times": 1,
"batch_size": 8,
"learning_rate": 1e-4,
"nb_epochs": 10,
"warmup_epochs": 3,
"saved_weights_name": "experimento_ssd7_panel_cell.h5",
"debug": true
},
"test": {
"test_image_folder": "Train&Test_A/images",
"test_annot_folder": "Train&Test_A/anns_cell",
"test_image_set_filename": "Train&Test_A/test.txt"
}
}

49
config_full_yolo_fault_1.json Executable file
View File

@@ -0,0 +1,49 @@
{
"model" : {
"min_input_size": 400,
"max_input_size": 400,
"anchors": [5,7, 10,14, 15, 15, 26,32, 45,119, 54,18, 94,59, 109,183, 200,21],
"labels": ["1"],
"backend": "full_yolo_backend.h5"
},
"train": {
"train_image_folder": "../Train&Test_S/Train/images/",
"train_annot_folder": "../Train&Test_S/Train/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_fault_1_gpu.pkl",
"train_times": 1,
"batch_size": 2,
"learning_rate": 1e-4,
"nb_epochs": 200,
"warmup_epochs": 15,
"ignore_thresh": 0.5,
"gpus": "0,1",
"grid_scales": [1,1,1],
"obj_scale": 5,
"noobj_scale": 1,
"xywh_scale": 1,
"class_scale": 1,
"tensorboard_dir": "log_experimento_fault_gpu",
"saved_weights_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5",
"debug": true
},
"valid": {
"valid_image_folder": "../Train&Test_S/Test/images/",
"valid_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/val_fault_1.pkl",
"valid_times": 1
},
"test": {
"test_image_folder": "../Train&Test_S/Test/images/",
"test_annot_folder": "../Train&Test_S/Test/anns/",
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/test_fault_1.pkl",
"test_times": 1
}
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

1
keras-yolo3-master/.gitattributes vendored Executable file
View File

@@ -0,0 +1 @@
*.h5 filter=lfs diff=lfs merge=lfs -text

4
keras-yolo3-master/.gitignore vendored Executable file
View File

@@ -0,0 +1,4 @@
*.jpg
*.jpeg
*.weights
*.h5

Some files were not shown because too many files have changed in this diff Show More