#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 17 13:55:42 2020 @author: dlsaavedra """ import numpy as np def disconnect(image, boxes, obj_thresh = 0.5, area_min = 400, merge = 0, z_thresh = 1.8): new_boxes = [] for num, box in enumerate(boxes): xmin = box.xmin + merge xmax = box.xmax - merge ymin = box.ymin + merge ymax = box.ymax - merge if xmin > 0 and ymin > 0 and xmax < image.shape[1] and ymax < image.shape[0] and box.get_score() > obj_thresh: area = (ymax - ymin)*(xmax - xmin) z_score = np.sum(image[np.int(ymin):np.int(ymax), np.int(xmin):np.int(xmax)]) / area if area > area_min: box.z_score = z_score new_boxes.append(box) #boxes_area_score[str(num)] = {'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'score' : score, 'area' : area} mean_score = np.mean([box.z_score for box in new_boxes]) sd_score = np.std([box.z_score for box in new_boxes]) new_boxes = [box for box in new_boxes if (box.z_score - mean_score)/sd_score > z_thresh] for box in new_boxes: z_score = (box.z_score - mean_score)/sd_score box.classes[0] = min((z_score-z_thresh)*0.5/(3-z_thresh)+ 0.5, 1) box.score = -1 return new_boxes def disconnect_plot(image, boxes, obj_thresh = 0.5, area_min = 400, merge = 0, z_thresh = 1.8): new_boxes = [] for num, box in enumerate(boxes): xmin = box.xmin + merge xmax = box.xmax - merge ymin = box.ymin + merge ymax = box.ymax - merge if xmin > 0 and ymin > 0 and xmax < image.shape[1] and ymax < image.shape[0] and box.get_score() > obj_thresh: area = (ymax - ymin)*(xmax - xmin) z_score = np.sum(image[np.int(ymin):np.int(ymax), np.int(xmin):np.int(xmax)]) / area if area > area_min: box.z_score = z_score new_boxes.append(box) #boxes_area_score[str(num)] = {'xmin': xmin, 'xmax': xmax, 'ymin': ymin, 'ymax': ymax, 'score' : score, 'area' : area} mean_score = np.mean([box.z_score for box in new_boxes]) sd_score = np.std([box.z_score for box in new_boxes]) normal_score = ([box.z_score for box in new_boxes] - mean_score)/sd_score # plt.figure() # _ = plt.hist(normal_score, bins='auto') # arguments are passed to np.histogram # plt.title("Histogram with 'auto' bins") # plt.show() # # plt.figure() # mean = np.mean([boxes_area_score[i]['area'] for i in boxes_area_score]) # sd = np.std([boxes_area_score[i]['area'] for i in boxes_area_score]) # normal = ([boxes_area_score[i]['area'] for i in boxes_area_score] - mean)/sd # _ = plt.hist(normal, bins='auto') # arguments are passed to np.histogram # plt.title("Histogram with 'auto' bins") # plt.show() new_boxes = [box for box in new_boxes if (box.z_score - mean_score)/sd_score > z_thresh] for box in new_boxes: z_score = (box.z_score - mean_score)/sd_score box.classes[0] = min((z_score-z_thresh)*0.5/(3-z_thresh)+ 0.5, 1) colors = plt.cm.brg(np.linspace(0, 1, 21)).tolist() plt.figure(figsize=(10,6)) plt.imshow(I,cmap = 'gray') current_axis = plt.gca() for box in new_boxes: color = colors[2] #boxes_area_score[key]['score_norm'] = (boxes_area_score[key]['score'] - mean) / sd #z_score = (box.score - mean_score) / sd_score #z_score = (boxes_area_score[key]['area'] ) ### Escribe el z-score #if z_score > 1: current_axis.text((box.xmin + box.xmax)/2, (box.ymin+ box.ymax)/2, '%.2f' % box.classes[0], size='x-large', color='white', bbox={'facecolor':color, 'alpha':1.0}) return new_boxes