Files
Photovoltaic_Fault_Detector/DataFlit2xml.py
Daniel Saavedra e91f29cd2b config Diode Fault
2020-02-19 14:26:55 -03:00

225 lines
6.4 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 25 14:12:34 2020
@author: dlsaavedra
"""
import argparse
import os
import numpy as np
import errno
import flirimageextractor
import matplotlib.pyplot as plt
import pandas
import matplotlib.patches as patches
import xml.etree.cElementTree as ET
def mkdir(filename):
if not os.path.exists(os.path.dirname(filename)):
try:
os.makedirs(os.path.dirname(filename))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
argparser = argparse.ArgumentParser(
description = 'Data flirt excel to train estructure data')
argparser.add_argument(
'-i',
'--input',
help='path data excel')
argparser.add_argument(
'-T',
'--input_thermal',
help='path thermal images')
# Example 'Thermal/'
argparser.add_argument(
'-o',
'--output',
help='folder save Train data')
#Examplo 'Train_B/'
def _main_(args):
input_path = args.input
output_path = args.output
thermal_path = args.input_thermal
mkdir(output_path)
mkdir(output_path + 'images/')
mkdir(output_path + 'anns/')
Excel = pandas.read_excel(input_path, sheet_name= 'Lista_Archivos_Fotos', header = 1)
for index_path in range(len(Excel.Archivo)):
if not pandas.notna(Excel.Archivo[index_path]):
continue
path_Flir = Excel.loc[index_path]['Archivo']
cod_falla = int(Excel.loc[index_path]['Cód. Falla'])
sev = Excel.loc[index_path]['Severidad']
#if cod_falla != 4:
# continue
## Junta las mismas fotos con distintos label EJ :
# DJI_0021B ---> DJI_0021
aux = path_Flir.split('/')[-2:]
if len(aux[1].split('.')[0]) > 8:
aux[1] = aux[1].split('.')[0][:8] + '.' + aux[1].split('.')[1]
path_Flir_aux = thermal_path + '/'.join(path_Flir.split('/')[-2:])
if not os.path.isfile(path_Flir_aux):
print ('No existe la imagen', path_Flir_aux)
continue
flir = flirimageextractor.FlirImageExtractor()
try:
flir.process_image(path_Flir_aux)
I = flirimageextractor.FlirImageExtractor.get_thermal_np(flir)
w, h = I.shape
except:
print('No se puede leer la imagen Flir', path_Flir_aux)
continue
dic_data = flir.get_metadata(path_Flir_aux)
meas = [s for s in dic_data.keys() if "Meas" in s]
q_bbox = len(meas)//3 # cada bbox tiene 3 parametros
param_bbox = []
for num_bbox in range(1, q_bbox + 1):
# Se guarda los parametros de los boundibox (xmin, ymin, width, height) width = xmax- xmin
param_bbox.append(list(map(int, dic_data['Meas' + str(num_bbox) + 'Params'].split(' '))))
##### Save Image and create XML annotations type of fault
path_save_img = output_path + 'images/' + '_'.join(aux)
path_save_anns = output_path + 'anns/' + '_'.join(aux)
path_save_anns = path_save_anns[:-4] + '.xml'
if not os.path.isfile(path_save_img):
plt.imsave(path_save_img , I, cmap = 'gray')
#si el archivo ya existe se agregan mas anotaciones
if os.path.isfile(path_save_anns):
et = ET.parse(path_save_anns)
root = et.getroot()
for box in param_bbox:
obj = ET.SubElement(root, "object")
ET.SubElement(obj, "name").text = str(cod_falla)
ET.SubElement(obj, "pose").text = 'Unspecified'
ET.SubElement(obj, "truncated").text = str(0)
ET.SubElement(obj, "difficult").text = str(0)
bx = ET.SubElement(obj, "bndbox")
ET.SubElement(bx, "xmin").text = str(box[0])
ET.SubElement(bx, "ymin").text = str(box[1])
ET.SubElement(bx, "xmax").text = str(box[0] + box[2])
ET.SubElement(bx, "ymax").text = str(box[1] + box[3])
tree = ET.ElementTree(root)
tree.write(path_save_anns)
## Si no existe se crea desde cero
else:
root = ET.Element("annotation")
ET.SubElement(root, "folder").text = output_path[:-1]
ET.SubElement(root, "filename").text = '_'.join(path_Flir.split('/')[-2:])
ET.SubElement(root, "path").text = path_save_img
source = ET.SubElement(root, "source")
ET.SubElement(source, "database").text = 'Unknown'
size = ET.SubElement(root, "size")
ET.SubElement(size, "width").text = str(w)
ET.SubElement(size, "height").text = str(h)
ET.SubElement(size, "depth").text = str(1)
ET.SubElement(root, "segmented").text = '0'
for box in param_bbox:
obj = ET.SubElement(root, "object")
ET.SubElement(obj, "name").text = str(cod_falla)
ET.SubElement(obj, "pose").text = 'Unspecified'
ET.SubElement(obj, "truncated").text = str(0)
ET.SubElement(obj, "difficult").text = str(0)
bx = ET.SubElement(obj, "bndbox")
ET.SubElement(bx, "xmin").text = str(box[0])
ET.SubElement(bx, "ymin").text = str(box[1])
ET.SubElement(bx, "xmax").text = str(box[0] + box[2])
ET.SubElement(bx, "ymax").text = str(box[1] + box[3])
tree = ET.ElementTree(root)
tree.write(path_save_anns)
files = []
# r=root, d=directories, f = files
for r, d, f in os.walk(input_path):
for file in f:
if '.jpg' in file:
files.append(os.path.join(r, file))
for f in files:
flir = flirimageextractor.FlirImageExtractor()
print(f)
try:
flir.process_image(f)
I = flirimageextractor.FlirImageExtractor.get_thermal_np(flir)
except:
I = plt.imread(f)
#flir.save_images()
#flir.plot()
#img = img.astype(np.int8)
W = np.where(np.isnan(I))
if np.shape(W)[1] > 0:
#xmax = np.max(np.amax(W,axis=0))
ymax = np.max(np.amin(W,axis=1))
img = I[:ymax,:]
else:
img = I
list_string = f.split('/')
list_string[-3]+= '_jpg'
f_aux = '/'.join(list_string)
mkdir(f_aux)
plt.imsave(f_aux, img, cmap = 'gray')
if __name__ == '__main__':
args = argparser.parse_args()
_main_(args)