Files
dl-desktop b586f22bf0 Summary
2020-02-06 16:47:03 -03:00

86 lines
2.8 KiB
Python
Executable File

import cv2
import numpy as np
import copy
def _rand_scale(scale):
scale = np.random.uniform(1, scale)
return scale if (np.random.randint(2) == 0) else 1./scale;
def _constrain(min_v, max_v, value):
if value < min_v: return min_v
if value > max_v: return max_v
return value
def random_flip(image, flip):
if flip == 1: return cv2.flip(image, 1)
return image
def correct_bounding_boxes(boxes, new_w, new_h, net_w, net_h, dx, dy, flip, image_w, image_h):
boxes = copy.deepcopy(boxes)
# randomize boxes' order
np.random.shuffle(boxes)
# correct sizes and positions
sx, sy = float(new_w)/image_w, float(new_h)/image_h
zero_boxes = []
for i in range(len(boxes)):
boxes[i]['xmin'] = int(_constrain(0, net_w, boxes[i]['xmin']*sx + dx))
boxes[i]['xmax'] = int(_constrain(0, net_w, boxes[i]['xmax']*sx + dx))
boxes[i]['ymin'] = int(_constrain(0, net_h, boxes[i]['ymin']*sy + dy))
boxes[i]['ymax'] = int(_constrain(0, net_h, boxes[i]['ymax']*sy + dy))
if boxes[i]['xmax'] <= boxes[i]['xmin'] or boxes[i]['ymax'] <= boxes[i]['ymin']:
zero_boxes += [i]
continue
if flip == 1:
swap = boxes[i]['xmin'];
boxes[i]['xmin'] = net_w - boxes[i]['xmax']
boxes[i]['xmax'] = net_w - swap
boxes = [boxes[i] for i in range(len(boxes)) if i not in zero_boxes]
return boxes
def random_distort_image(image, hue=18, saturation=1.5, exposure=1.5):
# determine scale factors
dhue = np.random.uniform(-hue, hue)
dsat = _rand_scale(saturation);
dexp = _rand_scale(exposure);
# convert RGB space to HSV space
image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype('float')
# change satuation and exposure
image[:,:,1] *= dsat
image[:,:,2] *= dexp
# change hue
image[:,:,0] += dhue
image[:,:,0] -= (image[:,:,0] > 180)*180
image[:,:,0] += (image[:,:,0] < 0) *180
# convert back to RGB from HSV
return cv2.cvtColor(image.astype('uint8'), cv2.COLOR_HSV2RGB)
def apply_random_scale_and_crop(image, new_w, new_h, net_w, net_h, dx, dy):
im_sized = cv2.resize(image, (new_w, new_h))
if dx > 0:
im_sized = np.pad(im_sized, ((0,0), (dx,0), (0,0)), mode='constant', constant_values=127)
else:
im_sized = im_sized[:,-dx:,:]
if (new_w + dx) < net_w:
im_sized = np.pad(im_sized, ((0,0), (0, net_w - (new_w+dx)), (0,0)), mode='constant', constant_values=127)
if dy > 0:
im_sized = np.pad(im_sized, ((dy,0), (0,0), (0,0)), mode='constant', constant_values=127)
else:
im_sized = im_sized[-dy:,:,:]
if (new_h + dy) < net_h:
im_sized = np.pad(im_sized, ((0, net_h - (new_h+dy)), (0,0), (0,0)), mode='constant', constant_values=127)
return im_sized[:net_h, :net_w,:]