Files
Photovoltaic_Fault_Detector/predict_yolo3_disconnect.py
dl-desktop 423774f21b yolo3 pane
2020-03-11 00:25:11 -03:00

152 lines
5.5 KiB
Python
Executable File

#! /usr/bin/env python
import time
import os
import argparse
import json
import cv2
import sys
sys.path += [os.path.abspath('keras-yolo3-master')]
from utils.utils import get_yolo_boxes, makedirs
from utils.bbox import draw_boxes
from keras.models import load_model
from tqdm import tqdm
import numpy as np
def _main_(args):
config_path = args.conf
input_path = args.input
output_path = args.output
with open(config_path) as config_buffer:
config = json.load(config_buffer)
makedirs(output_path)
###############################
# Set some parameter
###############################
net_h, net_w = 416, 416 # a multiple of 32, the smaller the faster
obj_thresh, nms_thresh = 0.8, 0.3
###############################
# Load the model
###############################
os.environ['CUDA_VISIBLE_DEVICES'] = config['train']['gpus']
infer_model = load_model(config['train']['saved_weights_name'])
###############################
# Predict bounding boxes
###############################
if 'webcam' in input_path: # do detection on the first webcam
video_reader = cv2.VideoCapture(0)
# the main loop
batch_size = 1
images = []
while True:
ret_val, image = video_reader.read()
if ret_val == True: images += [image]
if (len(images)==batch_size) or (ret_val==False and len(images)>0):
batch_boxes = get_yolo_boxes(infer_model, images, net_h, net_w, config['model']['anchors'], obj_thresh, nms_thresh)
for i in range(len(images)):
draw_boxes(images[i], batch_boxes[i], config['model']['labels'], obj_thresh)
cv2.imshow('video with bboxes', images[i])
images = []
if cv2.waitKey(1) == 27:
break # esc to quit
cv2.destroyAllWindows()
elif input_path[-4:] == '.mp4': # do detection on a video
video_out = output_path + input_path.split('/')[-1]
video_reader = cv2.VideoCapture(input_path)
nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
video_writer = cv2.VideoWriter(video_out,
cv2.VideoWriter_fourcc(*'MPEG'),
50.0,
(frame_w, frame_h))
# the main loop
batch_size = 1
images = []
start_point = 0 #%
show_window = False
for i in tqdm(range(nb_frames)):
_, image = video_reader.read()
if (float(i+1)/nb_frames) > start_point/100.:
images += [image]
if (i%batch_size == 0) or (i == (nb_frames-1) and len(images) > 0):
# predict the bounding boxes
batch_boxes = get_yolo_boxes(infer_model, images, net_h, net_w, config['model']['anchors'], obj_thresh, nms_thresh)
for i in range(len(images)):
# draw bounding boxes on the image using labels
draw_boxes(images[i], batch_boxes[i], config['model']['labels'], obj_thresh)
# show the video with detection bounding boxes
if show_window: cv2.imshow('video with bboxes', images[i])
# write result to the output video
video_writer.write(images[i])
images = []
if show_window and cv2.waitKey(1) == 27: break # esc to quit
if show_window: cv2.destroyAllWindows()
video_reader.release()
video_writer.release()
else: # do detection on an image or a set of images
image_paths = []
if os.path.isdir(input_path):
for inp_file in os.listdir(input_path):
image_paths += [input_path + inp_file]
else:
image_paths += [input_path]
image_paths = [inp_file for inp_file in image_paths if (inp_file[-4:] in ['.jpg', '.png', 'JPEG'])]
# the main loop
times = []
for image_path in image_paths:
image = cv2.imread(image_path)
print(image_path)
start = time.time()
# predict the bounding boxes
boxes = get_yolo_boxes(infer_model, [image], net_h, net_w, config['model']['anchors'], obj_thresh, nms_thresh)[0]
print('Elapsed time = {}'.format(time.time() - start))
times.append(time.time() - start)
# draw bounding boxes on the image using labels
for box in boxes:
draw_boxes(image, boxes, config['model']['labels'], obj_thresh)
# write the image with bounding boxes to file
cv2.imwrite(output_path + image_path.split('/')[-1], np.uint8(image))
file = open(args.output + '/time.txt','w')
file.write('Tiempo promedio:' + str(np.mean(times)))
file.close()
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Predict with a trained yolo model')
argparser.add_argument('-c', '--conf', help='path to configuration file')
argparser.add_argument('-i', '--input', help='path to an image, a directory of images, a video, or webcam')
argparser.add_argument('-o', '--output', default='output/', help='path to output directory')
args = argparser.parse_args()
_main_(args)