Files
Photovoltaic_Fault_Detector/keras-yolo3-master/utils/utils.py
Daniel Saavedra 7cf0c577a1 tensorflow2
2020-03-25 18:23:00 -03:00

337 lines
12 KiB
Python

import cv2
import numpy as np
import os
from .bbox import BoundBox, bbox_iou
from scipy.special import expit
import tensorflow as tf
def _sigmoid(x):
return expit(x)
def makedirs(path):
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def evaluate(model,
generator,
iou_threshold=0.5,
obj_thresh=0.5,
nms_thresh=0.45,
net_h=416,
net_w=416,
save_path=None):
""" Evaluate a given dataset using a given model.
code originally from https://github.com/fizyr/keras-retinanet
# Arguments
model : The model to evaluate.
generator : The generator that represents the dataset to evaluate.
iou_threshold : The threshold used to consider when a detection is positive or negative.
obj_thresh : The threshold used to distinguish between object and non-object
nms_thresh : The threshold used to determine whether two detections are duplicates
net_h : The height of the input image to the model, higher value results in better accuracy
net_w : The width of the input image to the model
save_path : The path to save images with visualized detections to.
# Returns
A dict mapping class names to mAP scores.
"""
# gather all detections and annotations
all_detections = [[None for i in range(generator.num_classes())] for j in range(generator.size())]
all_annotations = [[None for i in range(generator.num_classes())] for j in range(generator.size())]
for i in range(generator.size()):
raw_image = [generator.load_image(i)]
# make the boxes and the labels
pred_boxes = get_yolo_boxes(model, raw_image, net_h, net_w, generator.get_anchors(), obj_thresh, nms_thresh)[0]
score = np.array([box.get_score() for box in pred_boxes])
pred_labels = np.array([box.label for box in pred_boxes])
if len(pred_boxes) > 0:
pred_boxes = np.array([[box.xmin, box.ymin, box.xmax, box.ymax, box.get_score()] for box in pred_boxes])
else:
pred_boxes = np.array([[]])
# sort the boxes and the labels according to scores
score_sort = np.argsort(-score)
pred_labels = pred_labels[score_sort]
pred_boxes = pred_boxes[score_sort]
# copy detections to all_detections
for label in range(generator.num_classes()):
all_detections[i][label] = pred_boxes[pred_labels == label, :]
annotations = generator.load_annotation(i)
# copy detections to all_annotations
for label in range(generator.num_classes()):
all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy()
# compute mAP by comparing all detections and all annotations
average_precisions = {}
for label in range(generator.num_classes()):
false_positives = np.zeros((0,))
true_positives = np.zeros((0,))
scores = np.zeros((0,))
num_annotations = 0.0
for i in range(generator.size()):
detections = all_detections[i][label]
annotations = all_annotations[i][label]
num_annotations += annotations.shape[0]
detected_annotations = []
for d in detections:
scores = np.append(scores, d[4])
if annotations.shape[0] == 0:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
continue
overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations)
assigned_annotation = np.argmax(overlaps, axis=1)
max_overlap = overlaps[0, assigned_annotation]
if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
false_positives = np.append(false_positives, 0)
true_positives = np.append(true_positives, 1)
detected_annotations.append(assigned_annotation)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
# no annotations -> AP for this class is 0 (is this correct?)
if num_annotations == 0:
average_precisions[label] = 0
continue
# sort by score
indices = np.argsort(-scores)
false_positives = false_positives[indices]
true_positives = true_positives[indices]
# compute false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# compute recall and precision
recall = true_positives / num_annotations
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
# compute average precision
average_precision = compute_ap(recall, precision)
average_precisions[label] = average_precision,num_annotations
return average_precisions
def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w):
if (float(net_w)/image_w) < (float(net_h)/image_h):
new_w = net_w
new_h = (image_h*net_w)/image_w
else:
new_h = net_w
new_w = (image_w*net_h)/image_h
for i in range(len(boxes)):
x_offset, x_scale = (net_w - new_w)/2./net_w, float(new_w)/net_w
y_offset, y_scale = (net_h - new_h)/2./net_h, float(new_h)/net_h
boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w)
boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w)
boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h)
boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h)
def do_nms(boxes, nms_thresh):
if len(boxes) > 0:
nb_class = len(boxes[0].classes)
else:
return
for c in range(nb_class):
sorted_indices = np.argsort([-box.classes[c] for box in boxes])
for i in range(len(sorted_indices)):
index_i = sorted_indices[i]
if boxes[index_i].classes[c] == 0: continue
for j in range(i+1, len(sorted_indices)):
index_j = sorted_indices[j]
if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh:
boxes[index_j].classes[c] = 0
def decode_netout(netout_old, anchors, obj_thresh, net_h, net_w):
grid_h, grid_w = netout_old.shape[:2]
nb_box = 3
#netout = netout.reshape((grid_h, grid_w, nb_box, -1))
netout_old = tf.reshape(netout_old, (grid_h, grid_w, nb_box, -1))
nb_class = netout_old.shape[-1] - 5
boxes = []
## Tensorflow v.2
#print(tf.shape(netout))
aux_1 = _sigmoid(netout_old[..., :2])
#print(tf.shape(aux_1))
aux_2 = _sigmoid(netout_old[..., 4])
#print(tf.shape(aux_2[..., np.newaxis]))
aux_3 = aux_2[..., np.newaxis] * _softmax(netout_old[..., 5:])
aux_4 = aux_3 * (aux_3 > obj_thresh)
#print(tf.shape(aux_4))
netout = tf.concat([aux_1,netout_old[..., 2:4] ,aux_2[..., np.newaxis], aux_4], 3)
#print(tf.shape(new_netout))
#netout[..., :2] = _sigmoid(netout[..., :2])
#netout[..., 4] = _sigmoid(netout[..., 4])
#netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:])
#netout[..., 5:] *= netout[..., 5:] > obj_thresh
for i in range(grid_h*grid_w):
row = i // grid_w
col = i % grid_w
for b in range(nb_box):
# 4th element is objectness score
objectness = netout[row, col, b, 4]
if(objectness <= obj_thresh): continue
# first 4 elements are x, y, w, and h
x, y, w, h = netout[row,col,b,:4]
x = (col + x) / grid_w # center position, unit: image width
y = (row + y) / grid_h # center position, unit: image height
w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width
h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height
# last elements are class probabilities
classes = np.array(netout[row,col,b,5:])
box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, objectness, classes)
boxes.append(box)
return boxes
def preprocess_input(image, net_h, net_w):
new_h, new_w, _ = image.shape
# determine the new size of the image
if (float(net_w)/new_w) < (float(net_h)/new_h):
new_h = (new_h * net_w)//new_w
new_w = net_w
else:
new_w = (new_w * net_h)//new_h
new_h = net_h
# resize the image to the new size
resized = cv2.resize(image[:,:,::-1]/255., (new_w, new_h))
# embed the image into the standard letter box
new_image = np.ones((net_h, net_w, 3)) * 0.5
new_image[(net_h-new_h)//2:(net_h+new_h)//2, (net_w-new_w)//2:(net_w+new_w)//2, :] = resized
new_image = np.expand_dims(new_image, 0)
return new_image
def normalize(image):
return image/255.
def get_yolo_boxes(model, images, net_h, net_w, anchors, obj_thresh, nms_thresh):
image_h, image_w, _ = images[0].shape
nb_images = len(images)
batch_input = np.zeros((nb_images, net_h, net_w, 3))
# preprocess the input
for i in range(nb_images):
batch_input[i] = preprocess_input(images[i], net_h, net_w)
# run the prediction
batch_output = model.predict_on_batch(batch_input)
batch_boxes = [None]*nb_images
for i in range(nb_images):
yolos = [batch_output[0][i], batch_output[1][i], batch_output[2][i]]
boxes = []
# decode the output of the network
for j in range(len(yolos)):
yolo_anchors = anchors[(2-j)*6:(3-j)*6] # config['model']['anchors']
boxes += decode_netout(yolos[j], yolo_anchors, obj_thresh, net_h, net_w)
# correct the sizes of the bounding boxes
correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w)
# suppress non-maximal boxes
do_nms(boxes, nms_thresh)
batch_boxes[i] = boxes
return batch_boxes
def compute_overlap(a, b):
"""
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
Parameters
----------
a: (N, 4) ndarray of float
b: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0])
ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1])
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih
ua = np.maximum(ua, np.finfo(float).eps)
intersection = iw * ih
return intersection / ua
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def _softmax(x, axis=-1):
x = x - np.amax(x, axis, keepdims=True)
e_x = np.exp(x)
return e_x / e_x.sum(axis, keepdims=True)