Files
PVPlant/hydro/D8Pointer.py

440 lines
14 KiB
Python
Raw Permalink Normal View History

2025-01-28 00:04:13 +01:00
from whitebox_tools import WhiteboxTools
class D8Pointer(WhiteboxTools):
def run(self, args, working_directory, verbose = False):
import os
import multiprocessing
from whitebox_tools import Raster
def get_formatted_elapsed_time(start):
elapsed_time = round((time.time() - start), 4)
if elapsed_time < 60.0:
return "{} seconds".format(elapsed_time)
elif elapsed_time < 3600.0:
mins = int(elapsed_time / 60.0)
secs = elapsed_time - (mins * 60.0)
return "{} minutes {} seconds".format(mins, round(secs, 1))
else:
hours = int(elapsed_time / 3600.0)
mins = int((elapsed_time - (hours * 3600.0)) / 60.0)
secs = elapsed_time - (hours * 3600.0) - (mins * 60.0)
return "{} hours {} minutes {} seconds".format(hours, mins, round(secs, 1))
input_file = ""
output_file = ""
esri_style = False
if len(args) == 0:
raise ValueError("Tool run with no parameters.")
sep = os.path.sep
progress = 0
old_progress = 1
input = Raster(input_file)
start = time.time()
cell_size_x = input.header.cell_size_x
cell_size_y = input.header.cell_size_y
diag_cell_size = (cell_size_x * cell_size_x + cell_size_y * cell_size_y) ** 0.5
rows = input.header.rows
nodata = input.header.nodata
out_nodata = -32768
columns = input.header.columns
num_procs = multiprocessing.cpu_count()
def process_rows(tid):
d_x = [1, 1, 1, 0, -1, -1, -1, 0]
d_y = [-1, 0, 1, 1, 1, 0, -1, -1]
grid_lengths = [diag_cell_size,
cell_size_x,
diag_cell_size,
cell_size_y,
diag_cell_size,
cell_size_x,
diag_cell_size,
cell_size_y]
out_vals = [0, 1, 2, 4, 8, 16, 32, 64] if esri_style else [1, 2, 4, 8, 16, 32, 64, 128]
for row in range(rows):
if row % num_procs == tid:
data = [out_nodata] * columns
for col in range(columns):
z = input.data[row][col]
if z != nodata:
dir = 0
max_slope = float("-inf")
for i in range(8):
z_n = input.data[row + d_y[i]][col + d_x[i]]
if z_n != nodata:
slope = (z - z_n) / grid_lengths[i]
if slope > max_slope and slope > 0:
max_slope = slope
dir = i
if max_slope >= 0:
data[col] = out_vals[dir]
else:
data[col] = 0
tx1.send((row, data))
output = [[out_nodata] * columns for _ in range(rows)]
tx, rx = multiprocessing.Queue(), multiprocessing.Queue()
procs = []
for tid in range(num_procs):
p = multiprocessing.Process(target=process_rows, args=(tid,))
procs.append(p)
p.start()
for _ in range(rows):
data = rx.get()
row = data[0]
output[row] = data[1]
input = None
output_raster = Raster(output_file, "w")
output_raster.header = input.header
output_raster.data = output
elapsed_time = get_formatted_elapsed_time(start)
output_raster.header.nodata = out_nodata
output_raster.header.data_type = "i16"
output_raster.header.palette = "qual.plt"
output_raster.header.photometric_interp = "categorical"
output_raster.metadata.append(
"Created by whitebox_tools' {} tool".format(self.get_tool_name())
)
output_raster.metadata.append("Input file: {}".format(input_file))
output_raster.metadata.append(
"ESRI-style output: {}".format("true" if esri_style else "false")
)
output_raster.metadata.append(
"Elapsed Time (excluding I/O): {}".format(elapsed_time)
)
output_raster.write_raster()
return None
class Basin:
# Asignar valores a las direcciones D8
directions = {
'N': 1,
'NE': 2,
'E': 3,
'SE': 4,
'S': 5,
'SW': 6,
'W': 7,
'NW': 8
}
def __init__(self, mesh):
''' initialize '''
self.mesh = mesh
def calculate_flow_direction(mesh):
# Crear una lista para almacenar las direcciones del flujo
flow_directions = []
# Iterar sobre cada faceta
for facet in mesh.Facets:
# Calcular la dirección del flujo basándose en la inclinación
flow_direction = calculate_flow_direction_from_inclination(facet.Normal)
# Agregar la dirección del flujo a la lista
flow_directions.append(flow_direction)
return flow_directions
def calculate_flow_direction(mesh):
import time
start = time.time()
data = []
total_facets = mesh.CountFacets
for i, facet in enumerate(mesh.Facets):
c = facet.CircumCircle[0]
dir = 0
max_slope = 0.0 #float("-inf")
for ind in facet.NeighbourIndices:
if ind >= total_facets:
continue
c_n = mesh.Facets[ind].CircumCircle[0]
l = c.sub(c_n)
l.z = 0
slope = (c.z - c_n.z) / l.Length
if slope > max_slope and slope > 0:
max_slope = slope
dir = ind
if max_slope >= 0:
data.append(dir)
else:
data.append(-1)
if i == 100:
break
print(time.time() - start)
return data
def calculate_flow_direction_from_inclination(inclination):
# Obtener los componentes de inclinación en los ejes X, Y
inclination_x = inclination.x
inclination_y = inclination.y
#TODO: ver si se pude devolver un vector
# Asignar valores a las direcciones D8
directions = {
'N': 1,
'NE': 2,
'E': 3,
'SE': 4,
'S': 5,
'SW': 6,
'W': 7,
'NW': 8
}
# Calcular la dirección del flujo basándose en los componentes de inclinación
if inclination_x > 0:
if inclination_y > 0:
return directions['NE']
elif inclination_y < 0:
return directions['SE']
else:
return directions['E']
elif inclination_x < 0:
if inclination_y > 0:
return directions['NW']
elif inclination_y < 0:
return directions['SW']
else:
return directions['W']
else:
if inclination_y > 0:
return directions['N']
elif inclination_y < 0:
return directions['S']
else:
return None
# Calcular la dirección del flujo utilizando la función
flow_directions = calculate_flow_direction(land)
def delineate_watersheds(mesh, flow_direction):
# Obtener el número de caras (celdas) en la malla
num_faces = mesh.CountFacets
# Crear una lista para almacenar las etiquetas de las cuencas
watersheds = [0] * num_faces
# Inicializar el contador de etiquetas
label = 1
# Recorrer cada cara de la malla
for face_index in range(num_faces):
# Si la cara aún no tiene etiqueta asignada
if watersheds[face_index] == 0:
# Iniciar el seguimiento aguas arriba
label = delineate_upstream(mesh, face_index, label, flow_direction, watersheds)
return watersheds
def delineate_upstream(mesh, face_index, label, flow_direction, watersheds):
# Obtener la dirección del flujo para la cara actual
direction = flow_direction[face_index]
# Si la cara no tiene dirección de flujo o ya tiene una etiqueta asignada
if direction == 0 or watersheds[face_index] != 0:
return label
# Asignar la etiqueta actual a la cara
watersheds[face_index] = label
# Obtener los índices de las caras vecinas en la dirección del flujo
neighbor_face_indices = mesh.Facets[face_index].NeighbourIndices
# Realizar el seguimiento aguas arriba recursivamente para cada cara vecina
for neighbor_index in neighbor_face_indices:
delineate_upstream(mesh, neighbor_index, label, flow_direction, watersheds)
label +=1
return label
# Supongamos que ya has obtenido la malla (mesh) y la matriz de dirección del flujo (flow_direction)
# ...
# Delimitar las cuencas hidrográficas
watersheds = delineate_watersheds(mesh, flow_directions)
# Imprimir las etiquetas de las cuencas hidrográficas
print(watersheds)
import FreeCAD as App
import Part
def create_contour_wire(mesh, watershed_label):
# Obtener las caras de la malla pertenecientes a la cuenca hidrográfica
faces = [i for i, label in enumerate(watersheds) if label == watershed_label]
# Obtener los vértices de las caras seleccionadas
vertices = set()
for face_index in faces:
vertices.update(mesh.GetFace(face_index))
# Crear una lista de puntos para la wire
points = [App.Vector(*vertex) for vertex in vertices]
# Crear la wire a partir de la lista de puntos
wire = Part.makePolygon(points)
return wire
# Supongamos que ya has obtenido la malla (mesh) y la lista de etiquetas de las cuencas hidrográficas (watersheds)
# ...
# Definir el número de la cuenca hidrográfica para la que deseas generar la wire
cuenca_numero = 1
# Crear la wire para el contorno externo de la cuenca hidrográfica seleccionada
wire_cuenca = create_contour_wire(mesh, cuenca_numero)
# Agregar la wire al documento de FreeCAD
App.ActiveDocument.addObject("Part::Feature", "ContornoCuenca").Shape = wire_cuenca
import FreeCAD
def obtener_coordenadas(malla):
num_vertices = len(malla)
coordenadas = np.zeros((num_vertices, 3))
for i, vertice in enumerate(malla):
coordenadas[i] = vertice.Point
return coordenadas
def delimitar_cuencas(malla):
coordenadas = obtener_coordenadas(malla)
num_vertices = coordenadas.shape[0]
cuencas = np.zeros(num_vertices, dtype=int)
altura = np.max(coordenadas[:, 2]) + 1 # Altura inicial para iniciar el flujo
while True:
cambios = False
for i in range(num_vertices):
vecinos = np.where((coordenadas[:, 0] == coordenadas[i, 0]) & (coordenadas[:, 1] == coordenadas[i, 1]))[0]
for v in vecinos:
if coordenadas[v, 2] < altura and cuencas[v] != cuencas[i]:
cuencas[i] = cuencas[v]
cambios = True
altura -= 1
if not cambios:
break
return cuencas
# Obtener la malla de FreeCAD (ejemplo)
malla_fcad = FreeCAD.ActiveDocument.Objects[0].Shape.Faces[0].Mesh
malla = malla_fcad.Topology
# Delimitar cuencas hidrológicas
cuencas = delimitar_cuencas(malla)
# Visualizar las cuencas en un gráfico con PyCairo (ejemplo)
import cairo
width, height = 800, 600
surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
ctx = cairo.Context(surface)
ctx.scale(width, height)
# Dibujar las cuencas en el gráfico
for i, face in enumerate(malla_fcad.Facets):
ctx.set_source_rgba(0.5, 0.5, 0.5, 0.5) # Color de relleno
ctx.set_line_width(0.01) # Ancho de línea
ctx.move_to(face.Vertexes[0].Point.x, face.Vertexes[0].Point.y)
for j in range(1, len(face.Vertexes)):
ctx.line_to(face.Vertexes[j].Point.x, face.Vertexes[j].Point.y)
ctx.close_path()
ctx.stroke_preserve()
cuenca = cuencas[i]
color = (cuenca % 255) / 255.0 # Color basado en el número de cuenca
ctx.set_source_rgba(color, 0.0, 0.0, 0.5) # Color de borde
ctx.fill()
surface.write_to_png('cuencas_hidrologicas.png')
def calculate_triangle_slope(triangle):
# Calcula la pendiente o pendiente acumulada del triángulo
normal = triangle.Normal
# return normal.z / (normal.x ** 2 + normal.y ** 2) ** 0.5
# or
proyection = FreeCAD.Vector(normal)
proyection.z = 0
return normal.z/proyection.Length
def calculate_flow_accumulation(points, triangles):
num_points = len(points)
flow_accumulation = np.zeros(num_points, dtype=np.float64)
flow_direction = np.full(num_points, -1, dtype=np.int32)
for i in range(num_points):
connected_triangles = []
for j, triangle in enumerate(triangles):
if i in triangle:
connected_triangles.append(j)
for j in connected_triangles:
triangle = triangles[j]
area = triangle.Area
slope = calculate_triangle_slope(triangle)
# Actualizar la dirección del flujo si la pendiente es mayor que la dirección actual
if flow_direction[i] == -1 or slope > flow_direction[i]:
flow_direction[i] = slope
# Incrementar la acumulación de flujo
flow_accumulation[i] += area * slope
return flow_accumulation, flow_direction
import numpy as np
from queue import Queue
def delineate_watersheds(points, triangles, flow_direction, outlet_points):
num_points = len(points)
watersheds = np.full(num_points, -1, dtype=np.int32)
visited = np.zeros(num_points, dtype=np.bool)
for outlet_point in outlet_points:
queue = Queue()
queue.put(outlet_point)
while not queue.empty():
current_point = queue.get()
watersheds[current_point] = outlet_point
visited[current_point] = True
connected_triangles = []
for j, triangle in enumerate(triangles):
if current_point in triangle:
connected_triangles.append(j)
for j in connected_triangles:
triangle = triangles[j]
for point in triangle:
if not visited[point] and flow_direction[point] <= flow_direction[current_point]:
queue.put(point)
visited[point] = True
return watersheds