Create README_Result.md
This commit is contained in:
76
README_Result.md
Normal file
76
README_Result.md
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
# Result Photovoltaic fault detector
|
||||||
|
|
||||||
|
## Panel Detector
|
||||||
|
### SDD7
|
||||||
|
On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook), weight and result of this model (mAP 89.8%).
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="800" height="400" src="Result_ssd7_panel/result_ssd7_panel/DJI_0020.jpg">
|
||||||
|
</p>
|
||||||
|
<p align="center">
|
||||||
|
<img width="800" height="400" src="Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### YOLO3
|
||||||
|
On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%).
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="460" height="300" src="Result_yolo3_panel/Mision%203_DJI_0045.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Soiling Fault Detector
|
||||||
|
### SSD300
|
||||||
|
On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%).
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="800" height="400" src="Result_ssd300_fault_1/result_ssd300_fault_1/Mision_11_DJI_0011.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
### YOLO3
|
||||||
|
On folder [Result yolo3 fault 1](Result_yolo3_fault_1/) show [history train](Result_yolo3_fault_1/yolo3_full_yolo.output), weight and result of this model (mAP 73.02%).
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="460" height="300" src="Result_yolo3_fault_1/result_yolo3_fault_1/Mision_11_DJI_0011.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
## Affected Cell Detector
|
||||||
|
### YOLO3
|
||||||
|
On folder [Result yolo3 fault 2](Result_yolo3_fault_2/) show [history train](Result_yolo3_fault_2/yolo3_full_yolo.output), weight and result of this model (mAP 71.93%).
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="460" height="300" src="Result_yolo3_fault_2/result_yolo3_fault_2/Mision%2010_DJI_0093.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
## Diode Fault Detector
|
||||||
|
### YOLO3
|
||||||
|
On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Result_yolo3_fault_4/yolo3_full_yolo.output), weight and result of this model (mAP 66.22%).
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="460" height="300" src="Result_yolo3_fault_4/result_yolo3_fault_4/Mision%2041_DJI_0044.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Panel Disconnect Detector
|
||||||
|
### YOLO3
|
||||||
|
To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is:
|
||||||
|
`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result`
|
||||||
|
To use this model, only the yolo3_panel detector model is needed.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img width="460" height="300" src="Result_yolo3_panel/Mision%2011_DJI_0058.jpg">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality.
|
||||||
Reference in New Issue
Block a user