Merge branch 'master' into yolo3_tensorflow2
This commit is contained in:
2
.coveralls.yml
Normal file
2
.coveralls.yml
Normal file
@@ -0,0 +1,2 @@
|
||||
service_name: travis-pro
|
||||
repo_token: dPa5VOUwCyUgWdKawMjs0my7p23JSLBqy
|
||||
@@ -8,15 +8,15 @@ In the root project execute the following command to install all dependencies pr
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
View example
|
||||
|
||||
```
|
||||
Enumeration_KML.ipynb
|
||||
|
||||
```
|
||||
|
||||
# Panel Classifier
|
||||
This algorithm uses the division of the panels to classify them individually if they are with any fault.
|
||||
|
||||
@@ -40,3 +40,6 @@ ClassifierPanel_KML.ipynb
|
||||
| 0-Normal | 0.95 | 0.97 | 0.96 | 1688 | |
|
||||
| 1-Falla | 0.97 | 0.96 | 0.96 | 2084 | 0.96 |
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
19
README.md
19
README.md
@@ -4,9 +4,14 @@
|
||||

|
||||
[](CODE_OF_CONDUCT.md)
|
||||
[](https://www.codetriage.com/rentadronecl/photovoltaic_fault_detector)
|
||||
[](https://coveralls.io/github/RentadroneCL/Photovoltaic_Fault_Detector)
|
||||
|
||||
[Rentadrone.cl](https://rentadronecl.github.io)
|
||||
|
||||
## Forum
|
||||
|
||||
This project is part of the [UNICEF Innovation Fund Discourse community](https://unicef-if.discourse.group/c/projects/rentadrone/10). You can post comments or questions about each category of [Rentadrone Developers](https://rentadrone.cl/developers/) algorithms. We encourage users to participate in the forum and to engage with fellow users.
|
||||
|
||||
## Summary
|
||||
|
||||
Model-definition is a deep learning application for fault detection in photovoltaic plants. In this repository you will find trained detection models that point out where the panel faults are by using radiometric thermal infrared pictures. In [Web-API](https://github.com/RentadroneCL/Web-API) contains a performant, production-ready reference implementation of this repository.
|
||||
@@ -219,15 +224,17 @@ It carries out detection on the image and write the image with detected bounding
|
||||
## Evaluation
|
||||
The evaluation is integrated into the training process, if you want to do the independent evaluation you must go to the folder ssd_keras-master or keras-yolo3-master and use the following code
|
||||
|
||||
`python evaluate.py -c config.json`
|
||||
`python evaluate.py -c config.json`
|
||||
Example:
|
||||
`python keras-yolo3-master/evaluate.py -c config_full_yolo_fault_1_infer.json`
|
||||
|
||||
Compute the mAP performance of the model defined in `saved_weights_name` on the validation dataset defined in `valid_image_folder` and `valid_annot_folder`.
|
||||
|
||||
| Model | mAP | Config |
|
||||
|:--------------:|:------------------:|
|
||||
| YOLO3 Soiling | 0.7302 |[config](config_full_yolo_fault_1_infer.json) |
|
||||
| YOLO3 Diode | 0.6127 | [config](config_full_yolo_fault_4_infer.json) |
|
||||
| YOLO3 Affected Cell | 0.7230 | [config](config_full_yolo_fault_2_infer.json)|
|
||||
| Model | mAP | Config |
|
||||
|:--------------: |:------------------:|:------------------:|
|
||||
| YOLO3 Soiling | 0.7302 |[config](config_full_yolo_fault_1_infer.json) |
|
||||
| YOLO3 Diode | 0.6127 | [config](config_full_yolo_fault_4_infer.json)|
|
||||
| YOLO3 Affected Cell | 0.7230 | [config](config_full_yolo_fault_2_infer.json)|
|
||||
|
||||
|
||||
# Weights of Trained Models
|
||||
|
||||
Reference in New Issue
Block a user