225 lines
8.2 KiB
Markdown
Executable File
225 lines
8.2 KiB
Markdown
Executable File
|
|
# Rentadrone_MachineLearning Photovoltaic fault detector
|
|
|
|
|
|
|
|
## To do list:
|
|
- [x] Import model detection (SSD & YOLO3)
|
|
- [x] Model Panel Detection
|
|
- [x] Model Soiling Fault Detection
|
|
- [x] Model Diode Fault Detection
|
|
- [ ] Model Other Fault Detection
|
|
|
|
|
|
## Dependencies
|
|
|
|
* Python 3.x
|
|
* Numpy
|
|
* TensorFlow 1.x
|
|
* Keras 2.x
|
|
* OpenCV
|
|
* Beautiful Soup 4.x
|
|
|
|
## Model Detection
|
|
The models used for detection are SSD [SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) and YOLOv3 [YOLOv3: An Incremental Improvement] (https://arxiv.org/abs/1804.02767), they are imported from the following repositories:
|
|
* [SSD_Keras](https://github.com/pierluigiferrari/ssd_keras#how-to-fine-tune-one-of-the-trained-models-on-your-own-dataset)
|
|
* [YOLOv3_Keras](https://github.com/experiencor/keras-yolo3)
|
|
|
|
Grab the pretrained weights of SSD and YOLO3 from [Drive_Weights](https://drive.google.com/drive/folders/1LSc9FkAwJrAAT8pAUWz8aax_biFAMMXS?usp=sharing)
|
|
|
|
## Type of Data
|
|
The images used for the design of this model were extracted by air analysis, specifically: FLIR aerial radiometric thermal infrared pictures, taken by UAV (R-JPEG format). Which were converted into .jpg images for the training of these detection models.
|
|
Example FLIR image:
|
|
|
|

|
|
|
|
Same image in .jpg format:
|
|
|
|

|
|
|
|
## Training
|
|
|
|
### 1. Data preparation
|
|
|
|
View folder Train&Test_A/ and Train&Test_S/, example of panel anns and soiling fault anns.
|
|
|
|
Organize the dataset into 4 folders:
|
|
|
|
+ train_image_folder <= the folder that contains the train images.
|
|
|
|
+ train_annot_folder <= the folder that contains the train annotations in VOC format.
|
|
|
|
+ valid_image_folder <= the folder that contains the validation images.
|
|
|
|
+ valid_annot_folder <= the folder that contains the validation annotations in VOC format.
|
|
|
|
There is a one-to-one correspondence by file name between images and annotations.
|
|
For create own data set use LabelImg code from :
|
|
[https://github.com/tzutalin/labelImg](https://github.com/tzutalin/labelImg)
|
|
|
|
### 2. Edit the configuration file
|
|
The configuration file for YOLO3 is a json file, which looks like this (example soiling fault ):
|
|
|
|
```python
|
|
{
|
|
"model" : {
|
|
"min_input_size": 400,
|
|
"max_input_size": 400,
|
|
"anchors": [5,7, 10,14, 15, 15, 26,32, 45,119, 54,18, 94,59, 109,183, 200,21],
|
|
"labels": ["1"],
|
|
"backend": "full_yolo_backend.h5"
|
|
},
|
|
|
|
"train": {
|
|
"train_image_folder": "../Train&Test_S/Train/images/",
|
|
"train_annot_folder": "../Train&Test_S/Train/anns/",
|
|
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_fault_1_gpu.pkl",
|
|
|
|
"train_times": 1,
|
|
|
|
"batch_size": 2,
|
|
"learning_rate": 1e-4,
|
|
"nb_epochs": 200,
|
|
"warmup_epochs": 15,
|
|
"ignore_thresh": 0.5,
|
|
"gpus": "0,1",
|
|
|
|
"grid_scales": [1,1,1],
|
|
"obj_scale": 5,
|
|
"noobj_scale": 1,
|
|
"xywh_scale": 1,
|
|
"class_scale": 1,
|
|
|
|
"tensorboard_dir": "log_experimento_fault_gpu",
|
|
"saved_weights_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/experimento_yolo3_full_fault.h5",
|
|
"debug": true
|
|
},
|
|
|
|
"valid": {
|
|
"valid_image_folder": "../Train&Test_S/Test/images/",
|
|
"valid_annot_folder": "../Train&Test_S/Test/anns/",
|
|
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/val_fault_1.pkl",
|
|
|
|
"valid_times": 1
|
|
},
|
|
"test": {
|
|
"test_image_folder": "../Train&Test_S/Test/images/",
|
|
"test_annot_folder": "../Train&Test_S/Test/anns/",
|
|
"cache_name": "../Experimento_fault_1/Resultados_yolo3/full_yolo/test_fault_1.pkl",
|
|
|
|
"test_times": 1
|
|
}
|
|
}
|
|
```
|
|
The configuration file for SSD300 is a json file, which looks like this (example soiling fault ) and .txt with name of images (train.txt):
|
|
```
|
|
{
|
|
"model" : {
|
|
"backend": "ssd300",
|
|
"input": 400,
|
|
"labels": ["1"]
|
|
},
|
|
|
|
"train": {
|
|
"train_image_folder": "Train&Test_S/Train/images",
|
|
"train_annot_folder": "Train&Test_S/Train/anns",
|
|
"train_image_set_filename": "Train&Test_S/Train/train.txt",
|
|
|
|
"train_times": 1,
|
|
"batch_size": 12,
|
|
"learning_rate": 1e-4,
|
|
"warmup_epochs": 3,
|
|
"nb_epochs": 100,
|
|
"saved_weights_name": "Result_ssd300_fault_1/experimento_ssd300_fault_1.h5",
|
|
"debug": true
|
|
},
|
|
"valid": {
|
|
"valid_image_folder": "../Train&Test_D/Test/images/",
|
|
"valid_annot_folder": "../Train&Test_D/Test/anns/",
|
|
"valid_image_set_filename": "../Train&Test_D/Test/test.txt"
|
|
},
|
|
|
|
"test": {
|
|
"test_image_folder": "Train&Test_S/Test/images",
|
|
"test_annot_folder": "Train&Test_S/Test/anns",
|
|
"test_image_set_filename": "Train&Test_S/Test/test.txt"
|
|
}
|
|
}
|
|
```
|
|
|
|
### 3. Start the training process
|
|
|
|
`python train_ssd.py -c config.json -o /path/to/result`
|
|
|
|
or
|
|
`python train_ssd.py -c config.json -o /path/to/result`
|
|
|
|
By the end of this process, the code will write the weights of the best model to file best_weights.h5 (or whatever name specified in the setting "saved_weights_name" in the config.json file). The training process stops when the loss on the validation set is not improved in 20 consecutive epoches.
|
|
|
|
### 4. Perform detection using trained weights on image, set of images
|
|
|
|
`python predict_ssd.py -c config.json -i /path/to/image/or/video -o /path/output/result`
|
|
or
|
|
`python predict_yolo.py -c config.json -i /path/to/image/or/video -o /path/output/result`
|
|
|
|
It carries out detection on the image and write the image with detected bounding boxes to the same folder.
|
|
|
|
## Evaluation
|
|
The evaluation is integrated into the training process, if you want to do the independent evaluation you must go to the folder ssd_keras-master or keras-yolo3-master and use the following code
|
|
|
|
`python evaluate.py -c config.json`
|
|
|
|
Compute the mAP performance of the model defined in `saved_weights_name` on the validation dataset defined in `valid_image_folder` and `valid_annot_folder`.
|
|
|
|
# Result
|
|
All of weights of this trained model grab from [Drive_Weights](https://drive.google.com/drive/folders/1LSc9FkAwJrAAT8pAUWz8aax_biFAMMXS?usp=sharing)
|
|
## Panel Detector
|
|
### SDD7
|
|
On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook), weight and result of this model (mAP 89.8%).
|
|
|
|

|
|
|
|

|
|
|
|
## Soiling Fault Detector
|
|
### SSD300
|
|
On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%).
|
|
|
|
|
|

|
|
|
|
|
|
### YOLO3
|
|
On folder [Result yolo3 fault 1](Result_yolo3_fault_1/) show [history train](Result_yolo3_fault_1/yolo3_full_yolo.output), weight and result of this model (mAP 73.02%).
|
|
|
|
|
|

|
|
|
|
|
|
## Diode Fault Detector
|
|
### YOLO3
|
|
On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Result_yolo3_fault_4/yolo3_full_yolo.output), weight and result of this model (mAP 73.02%).
|
|
|
|

|
|
|
|
|
|
|
|
# Contributing
|
|
|
|
Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub.
|
|
|
|
## Pull Request Checklist
|
|
|
|
Before sending your pull requests, make sure you followed this list.
|
|
|
|
- Read [contributing guidelines](CONTRIBUTING.md).
|
|
- Read [Code of Conduct](CODE_OF_CONDUCT.md).
|
|
- Check if my changes are consistent with the [guidelines](https://github.com/RentadroneCL/model-definition/blob/master/CONTRIBUTING.md#general-guidelines-and-philosophy-for-contribution).
|
|
- Changes are consistent with the [Coding Style](https://github.com/RentadroneCL/model-definition/blob/master/CONTRIBUTING.md#c-coding-style).
|
|
- Run [Unit Tests](https://github.com/RentadroneCL/model-definition/CONTRIBUTING.md#running-unit-tests).
|
|
|
|
|
|
# Example to use trained model
|
|
|
|
In ['Example_Prediction'](Example_prediction.ipynb)
|