Update README.md
This commit is contained in:
23
README.md
23
README.md
@@ -6,11 +6,11 @@
|
||||
## To do list:
|
||||
- [x] Import model detection (SSD & YOLO3)
|
||||
- [x] Model Panel Detection (SSD7)
|
||||
- [ ] Model Panel Detection (YOLO3)
|
||||
- [x] Model Panel Detection (YOLO3)
|
||||
- [x] Model Soiling Fault Detection (YOLO3)
|
||||
- [x] Model Diode Fault Detection (YOLO3)
|
||||
- [ ] Model Other Fault Detection
|
||||
- [ ] Model Fault Panel Disconnect
|
||||
- [x] Model Fault Panel Disconnect
|
||||
- [x] Example use Trained Model
|
||||
|
||||
|
||||
@@ -19,8 +19,8 @@
|
||||
|
||||
* Python 3.x
|
||||
* Numpy
|
||||
* TensorFlow 1.x
|
||||
* Keras 2.x
|
||||
* TensorFlow 2.x
|
||||
* Keras 2.x (in TensorFlow)
|
||||
* OpenCV
|
||||
* Beautiful Soup 4.x
|
||||
|
||||
@@ -185,6 +185,12 @@ On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook),
|
||||
|
||||

|
||||
|
||||
|
||||
### YOLO3
|
||||
On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%).
|
||||
|
||||

|
||||
|
||||
## Soiling Fault Detector
|
||||
### SSD300
|
||||
On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%).
|
||||
@@ -206,8 +212,17 @@ On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Res
|
||||
|
||||

|
||||
|
||||
## Panel Disconnect Detector
|
||||
### YOLO3
|
||||
To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is:
|
||||
`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result`
|
||||
To use this model, only the yolo3_panel detector model is needed.
|
||||
|
||||
|
||||

|
||||
|
||||
The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality.
|
||||
|
||||
# Contributing
|
||||
|
||||
Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub.
|
||||
|
||||
Reference in New Issue
Block a user