Update README.md

This commit is contained in:
Daniel Saavedra
2020-04-03 13:22:59 -03:00
committed by GitHub
parent 4351f33609
commit 74b35f2415

View File

@@ -6,11 +6,11 @@
## To do list:
- [x] Import model detection (SSD & YOLO3)
- [x] Model Panel Detection (SSD7)
- [ ] Model Panel Detection (YOLO3)
- [x] Model Panel Detection (YOLO3)
- [x] Model Soiling Fault Detection (YOLO3)
- [x] Model Diode Fault Detection (YOLO3)
- [ ] Model Other Fault Detection
- [ ] Model Fault Panel Disconnect
- [x] Model Fault Panel Disconnect
- [x] Example use Trained Model
@@ -19,8 +19,8 @@
* Python 3.x
* Numpy
* TensorFlow 1.x
* Keras 2.x
* TensorFlow 2.x
* Keras 2.x (in TensorFlow)
* OpenCV
* Beautiful Soup 4.x
@@ -185,6 +185,12 @@ On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook),
![](Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg)
### YOLO3
On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%).
![](Result_yolo3_panel/Mision%203_DJI_0045.jpg)
## Soiling Fault Detector
### SSD300
On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%).
@@ -206,8 +212,17 @@ On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Res
![](Result_yolo3_fault_4/result_yolo3_fault_4/Mision%2041_DJI_0044.jpg)
## Panel Disconnect Detector
### YOLO3
To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is:
`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result`
To use this model, only the yolo3_panel detector model is needed.
![](Result_yolo3_panel/Mision%2011_DJI_0058.jpg)
The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality.
# Contributing
Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub.