Update README.md

This commit is contained in:
Daniel Saavedra
2020-04-03 13:22:59 -03:00
committed by GitHub
parent 4351f33609
commit 74b35f2415

View File

@@ -6,11 +6,11 @@
## To do list: ## To do list:
- [x] Import model detection (SSD & YOLO3) - [x] Import model detection (SSD & YOLO3)
- [x] Model Panel Detection (SSD7) - [x] Model Panel Detection (SSD7)
- [ ] Model Panel Detection (YOLO3) - [x] Model Panel Detection (YOLO3)
- [x] Model Soiling Fault Detection (YOLO3) - [x] Model Soiling Fault Detection (YOLO3)
- [x] Model Diode Fault Detection (YOLO3) - [x] Model Diode Fault Detection (YOLO3)
- [ ] Model Other Fault Detection - [ ] Model Other Fault Detection
- [ ] Model Fault Panel Disconnect - [x] Model Fault Panel Disconnect
- [x] Example use Trained Model - [x] Example use Trained Model
@@ -19,8 +19,8 @@
* Python 3.x * Python 3.x
* Numpy * Numpy
* TensorFlow 1.x * TensorFlow 2.x
* Keras 2.x * Keras 2.x (in TensorFlow)
* OpenCV * OpenCV
* Beautiful Soup 4.x * Beautiful Soup 4.x
@@ -185,6 +185,12 @@ On folder [Result ssd7 panel](Result_ssd7_panel/) show code (jupyter notebook),
![](Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg) ![](Result_ssd7_panel/result_ssd7_panel/DJI_0110.jpg)
### YOLO3
On folder [Result yolo3 panel](Result_yolo3_panel/) weight and result of this model (mAP 86.3%).
![](Result_yolo3_panel/Mision%203_DJI_0045.jpg)
## Soiling Fault Detector ## Soiling Fault Detector
### SSD300 ### SSD300
On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%). On folder [Result ssd300 fault 1](Result_ssd300_fault_1/) show code (jupyter notebook), weight and result of this model (mAP 79.5%).
@@ -206,8 +212,17 @@ On folder [Result yolo3 fault 4](Result_yolo3_fault_4/) show [history train](Res
![](Result_yolo3_fault_4/result_yolo3_fault_4/Mision%2041_DJI_0044.jpg) ![](Result_yolo3_fault_4/result_yolo3_fault_4/Mision%2041_DJI_0044.jpg)
## Panel Disconnect Detector
### YOLO3
To use the detector we must only use 'panel_yolo3_disconnect.py' with the previously established form, that is:
`python predict_yolo3_disconnect.py -c config_full_yolo_panel_infer.json -i /path/to/image/ -o /path/output/result`
To use this model, only the yolo3_panel detector model is needed.
![](Result_yolo3_panel/Mision%2011_DJI_0058.jpg)
The idea to detect the disconnection is by calculating the luminosity of each panel, to then normalize this data and highlight the panels with a luminosity out of normality.
# Contributing # Contributing
Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub. Contributions are welcome and will be fully credited. We accept contributions via Pull Requests on GitHub.